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 الإهداء

 داية أقدم عملي المتواضع خالصا لوجه الله الكريم وأرجو منه القبولب. 

 صلوا عليه...حبيبنا ورسولنا...إلى معلم البشرية الأول.  

 إلى المخلصين الذين قدموا أرواحهم لنصرة دينهم ووطنهم. 

 إلى أغلى الحبايب.. وأسأل الله أن يحفظهم.. إلى من أوصاني الله ببرهم.  

 جزاك الله خيراً..يك حياتي ورفيق عمريإلى شر..  

 رعاهما الله.. ضحى وعمر.. إلى زينة حياتي وأمل عمري.  

 وأخص منهم أخي وأخواتي..إلى كل أهلي وأحبائي.  

 إلى أساتذتي الكرام من لم يبخلوا علينا بكل ما لديهم.  

 جمعنا الله على منابر من نور..إلى أهل الحب وأهل الإخاء وأهل الوفاء.  

 

 

 

 

 

 



 الملخص

 

ة  في هذا البحث سنقوم بدراسة السلوك النوعي لبعض المعادلات التفاضلي

وسيكون  MATLAB 6.5ستخدام با سندعم نتائجنا بأمثلة عددية أجريتوالمنفصلة، 

  ،، وتحليل أنصاف الدورات، والحلول الدوريةعلى إيجاد الفترة غير المختلفةتركيزنا 

 .حلول الموجبة لهذه المعادلاتوالثبات الشامل لجميع ال

 :سندرس بشكل رئيسي الحلول الموجبة للمعادلتين التاليتين

 

 المعادلة التفاضلية المنفصلة الأولى هي: 

 

هي أعداد حقيقية موجبة،  وذلك عندما تكون القيم الابتدائية 

 .هي عدد صحيح موجب هي ثوابت موجبة، بينما  والمعاملات 

 

 المعادلة التفاضلية المنفصلة الثانية هي: 

 

هي أعداد حقيقية موجبة،  وذلك عندما تكون القيم الابتدائية 

هي ثوابت  والمعاملات 

هي عدد صحيح  موجبة، بينما 

 .موجبة
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Abstract

In this thesis we will study the qualitative behavior of some difference equations, and

we will support our results by numerical discussion using MATLAB 6.5. Our concentration

is on invariant intervals, periodic solutions, semicycle analysis, and the global asymptotic

stability of all positive solutions of these equations.

We mainly study the positive solutions of the following two difference equations:

The first difference equation is

xn+1 = Axn +
βxn + γxn−k
Bxn + Cxn−k

, n = 0, 1, 2, ... (1)

where the initial conditions x−k, · · · , x−1, x0 are arbitrary positive real numbers and the

coefficients A, β, γ, B, C are positive constants, while k is a positive integer number.

The second difference equation is

xn+1 = Axn +
pxn + xn−k
q + xn−k

, n = 0, 1, 2, ... (2)

where the initial conditions x−k, · · · , x−1, x0 are arbitrary positive real numbers and the

coefficients A, p, q are positive constants, while k is a positive integer number.

vii



v

viii



Introduction

The function f(x) = 2x is a rule that assigns to each number x a number twice

as large. This is a simple mathematical model. We might imagine that x denotes the

population of bacteria in a laboratory culture and that f(x) denotes the population one

hour later. Then the rule expresses the fact that the population doubles every hour. If

the culture has an initial population of 10, 000 bacteria, then after one hour there will

be f(10, 000) = 20, 000 bacteria, after two hours there will be f(f(10, 000)) = 40, 000

bacteria, and so on.

A dynamical system consists of a set of possible states, together with a rule that

determines the present state in terms of past states. In the previous paragraph, we

discussed a simple dynamical system whose states are population levels, that change with

time under the rule xn = f(xn−1) = 2xn−1. Here the variable n stands for time, and xn

designates the population at time n. We will require that the rule be deterministic, which

means that we can determine the present state (population, for example) uniquely from

the past states.

We will emphasize two types of dynamical systems. If the rule is applied at discrete

times, it is called a discrete-time dynamical system (Map). A discrete-time system

takes the current state as input and updates the situation by producing a new state as

output. By the state of the system, we mean whatever information is needed so that the

rule may be applied. In the first example above, the state is the population size. The rule

replaces the current population with the population one hour later.

The other important type of dynamical system is essentially the limit of discrete

systems with smaller and smaller updating times. The governing rule in that case becomes

a set of differential equations, and the term continuous-time dynamical system is

sometimes used.

This thesis includes two main parts: The first one is a background about dynamical

systems, and the second part deals with some discrete-time dynamical system (difference

equations). Part one includes chapters 1, 2 and 3, whereas part two includes chapters 4

and 5.

Chapter 1 gives an introduction to dynamical systems, while Chapter 2 is a primary

chapter because it gives all preliminary results which are used in the thesis, it deals

with the stability and linearized stability, semi-cycle analysis, criterion for the asymptotic

ix



stability, and the global asymptotic stability. Chapter 3 gives an idea about linear and

nonlinear dynamical systems.

In chapter 4 we study the qualitative behavior of the solutions of the difference equation

xn+1 = Axn +
βxn + γxn−k
Bxn + Cxn−k

, n = 0, 1, 2, ... (3)

where the initial conditions x−k, · · ·, x−1, x0 are arbitrary positive real numbers and the

coefficients A, β, γ, B, C are positive constants, while k is a positive integer number.

Our concentration is on invariant intervals, semicycle analysis, and the global asymp-

totic stability of all positive solutions of Eq.(3).

E.M.E Zayed et al.[16] have investigated the global stability of Eq.(3), but their results

are not accurate, and our aim is to correct these results.

Chapter 5 discusses the difference equation

xn+1 = Axn +
pxn + xn−k
q + xn−k

, n = 0, 1, 2, ... (4)

where the initial conditions x−k, · · ·, x−1, x0 are arbitrary positive real numbers and the

coefficients A, p, q are positive constants, while k is a positive integer number.

At the end of Chapters 4 and 5 we give numerical discussion using MATLAB 6.5 which

supports our theoretical results, and the codes are included in the thesis.
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Chapter 1

An Introduction to Dynamical

Systems

1.1 What is a dynamical system?

A dynamical system is a function which is doing the same thing over and over again,

it predicts what you are going to do next. Mathematically a dynamical system has two

parts: a state vector which describes exactly the state of some real or hypothetical

system, and a function (i.e., a rule) which tells us, given the current state, what the

state of the system will be in the next instant of time.

1.1.1 State Vectors

Dynamical systems can be described by numbers. For example, a ball tossed straight

up can be described using two numbers: its height h above the ground and its (upward)

velocity v. The pair of numbers (h, v) is a vector which completely describes the state of

the ball and hence is called the state vector of the system, and we present it as:[
h

v

]

It may be possible to describe the state of a system by a single number. For example,

consider a bank account opened with $100 at 6% interest compounded annually. The

state of this system at any instant in time can be described by a single number: the

balance in the account. In this case, the state vector has just one component.

1



On the other hand, some dynamical systems require many numbers to describe them.

For example, a dynamical system modeling global weather might have millions of variables

accounting for temperature, pressure, wind speed, etc. at points all around the world.

Although extremely complex, the state of the system is simply a list of numbers as a

vector.

1.1.2 The next instant: discrete time

The second part of a dynamical system is a rule which tells us how the system changes

over time. In other words, if we are given the current state of the system, the rule tells

us the state of the system in the next instant. In the case of the bank account described

above, the next instant will be one year later, since interest is paid only annually; time is

discrete, it is easy to write down the rule which takes us from the state of the system at

one instant to the state of the system in the next instant:

x(k + 1) = 1.06x(k)

x(0) = x0 = 100

The state of the bank account in all future years can now be computed. We see that

x(1) = 1.06x(0) = 1.06× 100 = 106, and then x(2) = 1.06x(1) = 1.06× 106, and so

x(k) = (1.06)k × 100

or more generally,

x(k) = (1.06)k × x0

A larger context

Let us put this example into a broader context which is applicable to all discrete time

dynamical systems. We have a state vector x ∈ Rn and a function f : Rn → Rn for which

x(k + 1) = f(x(k))

Once we are given that x(0) = x0 and that x(k+ 1) = f(x(k)), we can compute all values

of x(k), as follows:

x(1) = f(x(0)) = f(x0)

2



x(2) = f(x(1)) = f(f(x0))

x(3) = f(x(2)) = f(f(f(x0)))

x(4) = f(x(3)) = f(f(f(f(x0))))

...

x(k) = f(x(k − 1)) = f(f(· · · (f(x0)) · · ·))

where in the last line we have f applied k times to x0, and is written as

fk(x) = f(f(f(· · · f(x) · · ·)))︸ ︷︷ ︸
ktimes

1.1.3 The next instant: continuous time

Many systems are better described with time progressing smoothly. Consider our

earlier example of a ball thrown straight up. Its instantaneous status is given by its state

vector

x =

[
h

v

]
However, it does not make sense to ask what its state will be in the next instant of time,

there is no next instant since time advances continuously. We reflect this differently by

using the letter t (rather than k) to denote time.

If the ball has (upward) velocity v, then we know that dh
dt

= h′(t) = v(t) and
dv
dt

= v′(t) = −g. The change in the system can thus be described by[
h′(t)

v′(t)

]
=

[
0 1

0 0

][
h(t)

v(t)

]
+

[
0

−g

]

using that

x(t) =

[
h

v

]
we have

x′ = f(x) (1.1)

3



where f(x) = Ax+ b,

A =

[
0 1

0 0

]
and

b =

[
0

−g

]
Indeed, Eq.(1.1) is the form for all continuous time dynamical systems. A continuous

time dynamical system has a state vector x(t) ∈ Rn and we are given a function

f : Rn → Rn which specifies how quickly each component of x(t) is changing.

Returning to the example at hand, suppose the ball starts at height h0 and with

upward velocity v0, i.e.,

x0 =

[
h0

v0

]
We claim that the equations

h(t) = h0 + v0t− 1
2
gt2

and

v(t) = v0 − gt

describe the motion of the ball, and this can be verified easily.

1.2 What we want; what we can get

The notion of a dynamical system can be useful in modeling many different kinds of

phenomena. Once we have created a model, we would like to use it to make predictions.

Given a dynamical system either of the discrete form x(k + 1) = f(x(k)) or of the con-

tinuous sort x′ = f(x), and an initial value x0, we would very much like to know the

value of x(k) [or, x(t)] for all values of k [or t]. In some rare instances, this is possible.

For example, when f is a linear function. Unfortunately, it is all too common that the

dynamical system in which we are interested does not yield an analytic solution, so one

option is using numerical methods. However, we can also determine the qualitative nature

of the solution which we will focus on in this thesis.

4



Chapter 2

Preliminary Results

2.1 Introduction

In this chapter we present some definitions and state some known results which will

be useful in the subsequent chapters. For further details and additional references see [1],

[3], [4], [7] and [8].

2.2 Definitions of Stability and Linearized Stability

Definition 1 ([6]): A difference equation of order (k + 1) is an equation of the form

xn+1 = f(xn, xn−1, · · · , xn−k) , n = 0, 1, 2, ... (2.1)

where f is a continuous function which maps some set Jk+1 in to J . The set J is usually

an interval of real numbers, or a union of intervals, but it may even be a discrete set such

as the set of integers Z = {· · · ,−1, 0, 1, · · ·}.

A solution of Eq.(2.1) is a sequence {xn}∞n=−k which satisfies Eq.(2.1) for all n ≥ 0. If

we prescribe a set of (k + 1) initial conditions

x−k, x−k+1, · · · , x0 ∈ J

then

x1 = f(x0, x−1, · · · , x−k)

5



x2 = f(x1, x0, · · · , x−k+1)

...

and so the solution {xn}∞n=−k of Eq.(2.1) exists for all n ≥ −k and is uniquely determined

by the initial conditions.

Definition 2 [14]: A point x̄ is called an equilibrium point of Eq.(2.1) if

x̄ = f(x̄, x̄, · · · , x̄)

That is, xn = x̄ for n ≥ k is a solution of Eq.(2.1), or equivalently, x̄ is a fixed point of

f .

Definition 3 ([14]): Let x̄ be an equilibrium point of Eq.(2.1) and assume that I is some

interval of real numbers.

(a) The equilibrium x̄ of Eq.(2.1) is called locally stable (or stable) if for every ε > 0,

there exists δ > 0 such that if x−k, · · · , x−1, x0 ∈ I and

|x−k − x̄|+ · · ·+ |x−1 − x̄|+ |x0 − x̄| < δ

then

|xn − x̄| < ε for all n ≥ −k.

Figure(2.1) shows a stable equilibrium point of a difference equation of the first order.

(b) The equilibrium x̄ of Eq.(2.1) is called locally asymptotically stable (or asymp-

totically stable) if it is stable and if there exist γ > 0 such that if x−k, · · · , x−1, x0 ∈ I
and

|x−k − x̄|+ · · ·+ |x−1 − x̄|+ |x0 − x̄| < δ

then

limn→∞ xn = x̄

Figure(2.2) shows an asymptotically stable equilibrium point of a difference equation

of the first order.

6



Figure 2.1: Stable equilibrium point x∗ of a first order difference equation

(c) The equilibrium x̄ of Eq.(2.1) is called a global attractor if for every x−k, · · · , x0 ∈ I,

we have

limn→∞ xn = x̄

(d) The equilibrium x̄ of Eq.(2.1) is called a globally asymptotically stable (or globally

stable) if it is stable and is a global attractor. Figure(2.3) shows a globally stable

equilibrium point of a first order difference equation.

(e) The equilibrium x̄ of Eq.(2.1) is called unstable if it is not stable. Figure(2.4) shows

an unstable equilibrium point of a first order difference equation.

(f) The equilibrium x̄ of Eq.(2.1) is called a repeller (or a source) if there exist r > 0

such that if x−k, · · · , x−1, x0 ∈ I and

|x−k − x̄|+ · · ·+ |x−1 − x̄|+ |x0 − x̄| < r

then there exists N ≥ 1 such that

|xN − x̄| ≥ r

Clearly, a repeller is an unstable equilibrium point.

7



Figure 2.2: Asymptotically stable equilibrium point x∗ of a first order difference equation

Figure 2.3: Globally asymptotically stable equilibrium point x∗ of a first order difference

equation

8



Figure 2.4: Unstable equilibrium point x∗ of a first order difference equation

Suppose f is continuously differentiable in some open neighborhood of x̄. Let

pi = ∂f
∂ui

(x̄, x̄, · · · , x̄) for i = 0, 1, · · ·, k

denote the partial derivative of f(u0, u1, · · · , uk) with respect to ui evaluated at the equi-

librium point x̄ of Eq.(2.1)

Then the equation

zn+1 = p0zn + p1zn−1 + · · ·+ pkzn−k n = 0, 1, · · · (2.2)

is called the linearized equation of Eq.(2.1) about the equilibrium point x̄, and the char-

acteristic equation of Eq.(2.1) about the equilibrium point x̄ is:

λk+1 − p0λ
k − · · · − pk−1λ− pk = 0 (2.3)

Now we will give a primary theorem which is applicable to the difference equation of

the following form which is a special case of Eq.(2.1).

xn+1 = f(xn, xn−k) , n = 0, 1, 2, ... (2.4)

Let

ρ0 = ∂f
∂u0

(x̄, x̄)

and

9



ρ1 = ∂f
∂u1

(x̄, x̄)

The linearized equation of Eq.(2.4) about the equilibrium point x̄ is

zn+1 = ρ0zn + ρ1zn−k. (2.5)

Theorem 2.2.1 ([16])

Assume that ρ0, ρ1 ∈ R and k ∈ {1, 2, · · ·}. Then

|ρ0|+ |ρ1| < 1 (2.6)

is a sufficient condition for the asymptotic stability of the difference equation (2.4). Sup-

pose in addition that one of the following two cases holds:

1. k is an odd integer and ρ1 > 0.

2. k is an even integer and ρ0ρ1 > 0.

Then (2.6) is also a necessary condition for the asymptotic stability of Eq.(2.4).

The following well-known result, called the Linearized Stability Theorem, is very useful

in determining the local stability character of the equilibrium point x̄ of Eq.(2.1).

Theorem 2.2.2 ([6])

Suppose f is a continuously differentiable function defined on some open neighborhood of

x̄. Then the following statements are true:

1. If all the roots of Eq.(2.3) have absolute value less than one, then the equilibrium

point x̄ of Eq.(2.1) is locally asymptotically stable.

2. If at least one of the roots of Eq.(2.3) has absolute value greater than one, then the

equilibrium point x̄ of Eq.(2.1) is unstable.

3. If all the roots of Eq.(2.3) have absolute value greater than one, then the equilibrium

point x̄ of Eq.(2.1) is a source.

The equilibrium point x̄ of Eq.(2.1) is called hyperbolic if no root of Eq.(2.3) has

absolute value equal to one. If there exists a root of Eq.(2.3) with absolute value equal

to one, then x̄ is called non-hyperbolic.
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The equilibrium point x̄ of Eq.(2.1) is called a sink if every root of Eq.(2.3) has absolute

value less than one. Thus a sink is locally asymptotically stable, but the converse need

not be true.

The equilibrium point x̄ of Eq.(2.1) is called a saddle point equilibrium point if it is

hyperbolic, and if in addition, there exists a root of Eq.(2.3) with absolute value less than

one and another root of Eq.(2.3) with absolute value greater than one. In particular,

a saddle point equilibrium point is unstable.

A solution {xn}∞n=−k of Eq.(2.1) is called periodic with period p (or a period p solution)

if there exists an integer p ≥ 1 such that

xn+p = xn ∀n ≥ −k (2.7)

We say that the solution is periodic with prime period p if p is the smallest positive

integer for which Eq.(2.7) holds. In this case a p-tuple

(xn+1, xn+2, · · · , xn+p)

of any p consecutive values of the solution is called a p-cycle of Eq.(2.1).

A solution {xn}∞n=−k of Eq.(2.1) is called eventually periodic with period p if there

exists an integer N ≥ −k such that {xn}∞n=N is periodic with period p ; that is

xn+p = xn ∀n ≥ N

The orbit of x under f is the set of points {x, f(x), f 2(x), · · ·}. The starting point x

for the orbit is called the initial value of the orbit. For example, the orbit of x = 0.01

under the function g(x) = 2x(1− x) is {0.01, 0.0198, 0.0388, · · ·}

2.3 Semi-cycle Analysis

Assume that x̄ is an equilibrium point of Eq.(2.1), and let {xn}∞n=−k be a solu-

tion of Eq.(2.1). A positive semi-cycle of {xn}∞n=−k consists of ”a string” of terms

{xl, xl+1, · · · , xm} all greater than or equal to x̄, with l ≥ −k and m ≤ ∞ such that

either l = −k or l > −k and xl−1 < x̄

and

either m =∞ or m <∞ and xm+1 < x̄
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A negative semi-cycle of {xn}∞n=−k consists of ”a string” of terms {xl, xl+1, · · · , xm}
all less than x̄, with l ≥ −k and m ≤ ∞ such that

either l = −k or l > −k and xl−1 ≥ x̄

and

either m =∞ or m <∞ and xm+1 ≥ x̄

A solution {xn}∞n=−k of Eq.(2.1) is called non-oscillatory about x̄ if there existsN ≥ −k
such that either

xn > x̄ for all n ≥ N

or

xn < x̄ for all n ≥ N

Otherwise, {xn}∞n=−k of Eq.(2.1) is called oscillatory about x̄.

A solution {xn}∞n=−k of Eq.(2.1) is called strictly oscillatory about x̄ if for every

N ≥ −k there exists m,n ≥ N such that xm < x̄ and xn > x̄.

We say that a positive solution {xn}∞n=−k of Eq.(2.1) persists (or is persistent) if there

exists a positive constant m such that

m ≤ xn for all n ≥ −k

Eq.(2.1) is said to be permanent if there exist positive real numbers m and M such that

for every solution {xn}∞n=−k of Eq.(2.1) there exists an integer N ≥ −k (which depends

upon the initial conditions x−k, x−k+1, · · · , x−1, x0) such that

m ≤ xn ≤M for all n ≥ N

2.4 Criterion for the Asymptotic Stability

In this section we give a simple but powerful criterion for the asymptotic stability of

equilibrium points. The following theorem is our main tool in this section.

12



Theorem 2.4.1 ([4])

Let x be an equilibrium point of the difference equation

x(n+ 1) = f(x(n)) (2.8)

where f is continuously differentiable at x. The following statements then hold:

(i) If |f ′(x)| < 1, then x is asymptotically stable.

(ii) If |f ′(x)| > 1, then x is unstable.

Remark: In the literature of dynamical systems, the equilibrium point x is said to be

hyperbolic if |f ′(x)| 6= 1.

Observe that Theorem (2.4.1) does not address the non-hyperbolic case where |f ′(x)| = 1.

Further analysis is needed here to determine the stability of the equilibrium point x. Our

first discussion will address the case where f ′(x) = 1.

Theorem 2.4.2 ([4])

Suppose that for an equilibrium point x of (2.8), f ′(x) = 1. The following statements then

hold:

1. If f ′′(x) 6= 0, then x is unstable.

2. If f ′′(x) = 0, and f ′′′(x) > 0, then x is unstable.

3. If f ′′(x) = 0, and f ′′′(x) < 0, then x is asymptotically stable.

Now we will investigate the case f ′(x) = −1. But before doing so, we need to introduce

the notion of the Schwarzian derivative of a function f :

Sf(x) = f ′′′(x)
f ′(x)

− 3
2
(f
′′(x)
f ′(x)

)2

Note that if f ′(x) = −1, then

Sf(x) = −f ′′′(x)− 3
2
(f ′′(x))2
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Theorem 2.4.3 [4]

Suppose that for an equilibrium point x of (2.8), f ′(x) = −1. The following statements

then hold:

1. If Sf(x) < 0, then x is asymptotically stable.

2. If Sf(x) > 0, then x is unstable.

2.5 Global Asymptotic Stability

Unfortunately when we need to establish the global attractivity of the positive equi-

librium of a difference equation, we face the problem that there are not enough results in

the literature to cover all various cases. In this section we mention the primary theorems

in investigating the global stability of the positive equilibrium of Eq.(2.4).

Theorem 2.5.1 ([10])

Let [a, b] be an interval of real numbers and assume that

f : [a, b]× [a, b]→ [a, b]

is a continuous function satisfying the following properties:

(a) f(x, y) is non-decreasing in x ∈ [a, b] for each y ∈ [a, b], and f(x, y) is non-increasing

in y ∈ [a, b] for each x ∈ [a, b].

(b) If (m,M) ∈ [a, b]× [a, b] is a solution of the system

f(m,M) = m and f(M,m) = M

then m = M .

Then Eq.(2.4) has a unique equilibrium x ∈ [a, b] and every solution of Eq.(2.4) converges

to x.

Theorem 2.5.2 ([10])

Let [a, b] be an interval of real numbers and assume that
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f : [a, b]× [a, b]→ [a, b]

is a continuous function satisfying the following properties:

(a) f(x, y) is non-increasing in x ∈ [a, b] for each y ∈ [a, b], and f(x, y) is non-decreasing

in y ∈ [a, b] for each x ∈ [a, b].

(b) The difference equation Eq.(2.4) has no solutions of prime period two in [a, b].

Then Eq.(2.4) has a unique equilibrium x ∈ [a, b] and every solution of Eq.(2.4) converges

to x.

Theorem 2.5.3 ([10])

Let [a, b] be an interval of real numbers and assume that

f : [a, b]× [a, b]→ [a, b]

is a continuous function satisfying the following properties:

(a) f(x, y) is non-increasing in each of its arguments.

(b) If (m,M) ∈ [a, b]× [a, b] is a solution of the system

f(m,m) = M and f(M,M) = m

then m = M .

Then Eq.(2.4) has a unique equilibrium x ∈ [a, b] and every solution of Eq.(2.4) converges

to x.

Theorem 2.5.4 ([10])

Let [a, b] be an interval of real numbers and assume that

f : [a, b]× [a, b]→ [a, b]

is a continuous function satisfying the following properties:

(a) f(x, y) is non-decreasing in each of its arguments.
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(b) The equation

f(x, x) = x has a unique positive solution.

Then Eq.(2.4) has a unique equilibrium x ∈ [a, b] and every solution of Eq.(2.4) converges

to x.

Theorem 2.5.5 ([10])

Let I ⊆ [0,∞) be some interval and assume that f ∈ C[I×I, (0,∞)] satisfies the following

conditions:

(i) f(x, y) is non-decreasing in each of its arguments.

(ii) Eq.(2.4) has a unique positive point x ∈ I and the function f(x, x) satisfies the

negative feedback condition:

(x− x)(f(x, x)− x) < 0 for every x ∈ I − {x}

Then every positive solution of Eq.(2.4) with initial conditions in I converges to x.

The following result extends Theorems (2.5.1), (2.5.3) and (2.5.4) to be applicable

to Eq.(2.1).

Theorem 2.5.6 ([6])

Let F : [a, b]k+1 → [a, b] be a continuous function, where k is a positive integer, and where

[a, b] is an interval of real numbers and consider the difference equation (2.1). Suppose

that F satisfies the following conditions:

(i) For each integer i with 1 ≤ i ≤ k + 1, the function F (z1, z2, · · · , zk+1) is weakly

monotonic in zi for fixed z1, z2, · · ·, zi−1, zi+1, · · ·, zk+1.

(ii) If (m,M) is a solution of the system

m = F (m1,m2, · · · ,mk+1) and M = F (M1,M2, · · · ,Mk+1)
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then m = M , where for each i = 1, 2, · · · , k + 1, we set

mi =

{
m if F non-decreasing in zi

M if F non-increasing in zi

and

Mi =

{
M if F non-decreasing in zi

m if F non-increasing in zi

Then there exists exactly one equilibrium point x of the difference equation (2.1), and

every solution of Eq.(2.1) converges to x.
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Chapter 3

Linear and Nonlinear Dynamical

Systems

3.1 Linear Dynamical Systems

In Chapter 1 we introduced discrete time dynamical system which has the form

x(k + 1) = f(x(k)). The function f : Rn → Rn might be quite simple or terribly

complicated.

In this chapter we study dynamical systems in which the function f is particularly

nice: we assume f is linear. We begin with the case when f is a function of one variable

(i.e.,f(x) = ax+ b), where a and b are constants, then we deal with the general case when

f is a function of several variables (i.e.,f(x) = Ax+ b ), where A is an n× n matrix and

b is a fixed n-vector.

3.1.1 One dimension

We begin by considering the discrete time dynamical systems in which f(x) = ax+ b,

so:

x(k + 1) = ax(k) + b

We discuss this case first analytically (by equations) and then geometrically (with

graphs).
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Analytical Discussion

1. If b = 0

x(k + 1) = ax(k).

It is very clear that for any k we have simply that x(k) = akx0.

(a) If |a| < 1, then ak → 0 as k →∞ and so x(k)→ 0.

(b) If |a| > 1, then ak →∞ as k →∞. Thus unless x0 = 0, we have x(k)→∞.

(c) If |a| = 1

(i) If a = 1, then we have just that x(0) = x(1) = x(2) = x(3) = · · ·, i.e.,

x(k) = x0

(ii) If a = −1, then x(0) = −x(1) = x(2) = −x(3) = · · ·, that is, x(k)

alternates between x0 and −x0 forever.

2. If b 6= 0

x(k + 1) = ax(k) + b.

We notice that:

x(0) = x0,

x(1) = ax(0) + b = ax0 + b,

x(2) = ax(1) + b = a(ax0 + b) + b = a2x0 + ab+ b,

x(3) = ax(2) + b = a(a2x0 + ab+ b) + b = a3x0 + a2b+ ab+ b,

x(4) = ax(3) + b = a(a3x0 + a2b+ ab+ b) + b = a4x0 + a3b+ a2b+ ab+ b.

We conclude that

x(k) = akx0 + (ak−1 + ak−2 + · · ·+ a+ 1)b (3.1)

We can simplify Eq.(3.1) by noticing that

ak−1 + ak−2 + · · ·+ a+ 1

is a geometric series which equals

ak−1
a−1
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provided that a 6= 1. If a = 1, the series ak−1 + ak−2 + · · ·+ a+ 1 simply equals k.

Thus

x(k) =

{
akx0 + (a

k−1
a−1

)b when a 6= 1;

x0 + kb when a = 1.

Now we will find the equilibrium point x̄ such that f(x̄) = x̄

f(x) = ax+ b

x̄ = ax̄+ b

(1− a)x̄ = b

x̄ =
b

1− a
Depending on the values of x(k) which is given above we will analyze the behavior of

solution as k →∞ for the cases |a| < 1, |a| > 1, and |a| = 1.

1. If |a| < 1,

then ak → 0 as k →∞, and so[
x(k) = akx0 + (

ak − 1

a− 1
)b

]
→ 0 + (

−1

a− 1
)b

and so

x(k)→ b
1−a = x̄ as k →∞

Thus x̄ is a stable or an attractive fixed point of the dynamical system because the

system is attracted to it.

2. If |a| > 1,

then ak →∞ as k →∞[
x(k) = akx0 + (

ak − 1

a− 1
)b = ak(x0 −

b

1− a
) +

b

1− a

]
(i) If x0 = x̄, then x(k) = b

1−a = x̄ for all time.
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(ii) If x0 6= b
1−a , then |x(k)| → ∞ as k →∞

3. |a| = 1.

(a) If a = 1, then x(k) = x0 + kb, and so if b 6= 0, then |x(k)| → ∞, but if (b = 0),

then x(k) = x0 regardless of the value of x0.

(b) If a = −1, then

x(0) = x0

x(1) = −x0 + b

x(2) = −(−x0 + b) + b = x0

x(3) = −x0 + b

x(4) = x0
...

Thus x(k) oscillates between two values, x0 and b − x0. But if x0 = b − x0, i.e.,

x0 = b/2 = b/(1− (−1)) = x̄, then x(k) = x̄.

Graphical Discussion

Before we start in the geometrical discussion, we will introduce some important con-

cepts.

The first concept is that:

The equilibrium point is the x-coordinate of the point where the graph of f intersects the

diagonal line y = x. For example, there are three equilibrium points for the equation

x(n+ 1) = x3(n)

To find these equilibrium points, we let f(x̄) = x̄, and solve for x̄. Hence, there are three

equilibrium points: {−1, 0, 1}, and this can be shown graphically as in Fig.(3.1).

The second concept is that:

The Stair Step (Cobweb) Diagram is an important graphical method for analyzing the

stability of equilibrium points. Since x(n + 1) = f(x(n)), we may draw a graph of f in

the (x(n), x(n+ 1)) plane. Then, given x(0) = x0, we pinpoint the value x(1) by drawing

a vertical line through x0 so that it also intersects the graph of f at (x0, x(1)). Next, draw
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Figure 3.1: Fixed points of f(x) = x3.

a horizontal line from (x0, x(1)) to meet the diagonal line y = x at the point (x(1), x(1)).

A vertical line drawn from the point (x(1), x(1)) will meet the graph of f at the point

(x(1), x(2)). Continuing this process, one may find x(n) for all n > 0.

Now, let us revisit systems of the form x(k + 1) = ax(k) + b from a geometric point

of view. Graphs will make clear why |a| < 1 causes the iterations to converge to x̄, while

|a| > 1 causes the iterates to explode.

1. |a| < 1

(a) If 0 < a < 1

Figure (3.2) illustrates what happens when we iterate y = f(x) = ax + b

with 0 < a < 1. We chose x(0) larger than x̄ = b
1−a . It is easy to see that the

values x(0), x(1), x(2), etc. get smaller and travel toward x̄. The same is true

if we chose x(0) < x̄

(b) If −1 < a < 0

Figure (3.3) illustrates what happens when we iterate y = f(x) = ax + b

with −1 < a < 0. The line slopes downward, but not very steeply. We start

with x(0) a good bit to the right of x̄. Observe that x(1) is to the left of x̄,

but not nearly as far. Successive iterations take us to alternate sides of x̄, but

getting closer and closer, and ultimately converging to x̄.
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Figure 3.2: Iterating f(x) = ax+ b with 0 < a < 1

Figure 3.3: Iterating f(x) = ax+ b with −1 < a < 0.
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Figure 3.4: Iterating f(x) = ax+ b with a > 1.

Figure 3.5: Iterating f(x) = ax+ b with a < −1.
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2. |a| > 1

(a) If a > 1

Figure (3.4) illustrates what happens when we iterate y = f(x) = ax + b

with a > 1. The line slopes steeply upward. We start x(0) just slightly greater

than x̄. Observe that x(1) is now to the right of x(0), and then x(2) is farther

right, etc. The successive iterates are going to ∞. If we chose x(0) < x̄, then

the iterates would move to −∞.

(b) If a < −1

In Figure (3.5) we have a < −1; hence the line y = f(x) = ax+ b is sloped

steeply downward. We begin with x(0) just to the right of x̄. Observe that

x(1) < x̄ but at a greater distance from x̄ than x(0). Next, x(2) is to the

right of x̄, x(3) is to the left, etc. with each at increasing distance from x̄ and

diverging to ∞.

3. |a| = 1

(a) If a = 1

Figure (3.6) illustrates what happens when we iterate y = f(x) = 1x + b

with b 6= 0. We see that each iteration moves the point x(k) a step to the right

and heads to ∞.

(b) If a = −1

Finally, Figure (3.7) considers the case f(x) = −1x+ b. The starting value

x(0) is taken to be to the left of x̄. Next, x(1) is to the right of x̄ and then x(2)

is back at exactly the same location as x(0). In this manner, x(0), x(2), x(4),

etc. all have the same value (denoted by x(even) in the figure), and, likewise,

x(1) = x(3) = x(5) = · · · (denoted by x(odd)).
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Figure 3.6: Iterating f(x) = ax+ b with a = 1 and b 6= 0.

Figure 3.7: Iterating f(x) = ax+ b with a = −1.
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3.1.2 Two (and more) dimensions

In this section we consider discrete linear systems in several variables. The systems, of

course, have the form x(k+ 1) = f(x(k)). The state vector x is no longer a single number

but rather is a vector with n components (i.e., x ∈ Rn). The function f(x) = Ax + b,

where A is an n × n matrix, and b ∈ Rn is a (constant) vector, and so we will deal with

the system

x(k + 1) = Ax(k) + b x(0) = x0.

1. If b = 0

x(k + 1) = Ax(k).

Simply

x(1) = Ax(0) = Ax0

x(2) = Ax(1) = A2x0

x(3) = Ax(2) = A3x0

Thus

x(k) = Akx0.

We assume that A is diagonalizable, and that it has n linearly independent

eigenvectors v1, · · ·, vn with associated eigenvalues λ1, · · ·, λn. Let Λ be the diagonal

matrix with diagonal entries λ1, · · ·, λn, and let S be the n × n matrix whose ith

column is vi. Thus we may write A = SΛS−1. So

Ak = (SΛS−1)(SΛS−1)(SΛS−1) · · · (SΛS−1)

Ak = SΛ(S−1S)Λ(S−1S)Λ(S−1S) · · · (S−1S)ΛS−1

Thus
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Ak = SΛkS−1

Now

Λk =



λ1 0 0 · · · 0

0 λ2 0 · · · 0

0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn



k

=



λk1 0 0 · · · 0

0 λk2 0 · · · 0

0 0 λk3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λkn


Thus to understand the behavior of Ak we need to understand the behavior of

the λkj ’s. If λj is a real number, then λj → 0 if |λj| < 1, and λkj explodes if |λj| > 1.

However, the eigenvalues of A might be complex numbers, and then we need to

know how λkj behaves for complex λj. We write λj in its polar form: λj = rje
iθj .

Thus

|λkj | = |rjeikθj | →

{
0 if r < 1;

∞ if r > 1.

Now we will return to our system

x(k + 1) = Ax(k) From which we found x(k) = Akx0

Case 1: If all the eigenvalues of A have absolute values less than 1, then Ak tends

to the zero matrix as k →∞. Thus

x(k) = Akx0 → 0.

Case 2: If some eigenvalues of A have absolute values greater than 1, then entries

in Ak will diverge to ∞.

We have assumed that the eigenvectors v1, · · · , vn are linearly independent, but we

know that any family of n linearly independent vectors in Rn forms a basis, hence

every vector (x0 in particular) can be written uniquely as a linear combination of

the vi’s. Thus

x(0) = x0 = c1v1 + c2v2 + · · ·+ cnvn

Multiply both sides by A

28



x(1) = Ax(0) = c1Av1 + c2Av2 + · · ·+ cnAvn

But we have Avi = λivi, so

x(1) = c1λ1v1 + c2λ2v2 + · · ·+ cnλnvn

In the same way we conclude that

x(k) = c1λ
k
1v1 + c2λ

k
2v2 + · · ·+ cnλ

k
nvn

Now, if |λi| > 1, then |λki | → ∞ as k → ∞. Hence, unless ci = 0, we have

|x(k)| → ∞.

Case 3: If some eigenvalues have absolute value equal to 1, and the rest have abso-

lute value less than 1.

We again have

x(k) = c1λ
k
1v1 + c2λ

k
2v2 + · · ·+ cnλ

k
nvn

The terms involving λi’s with absolute value less than 1 disappear, but the other

components neither vanish nor explode.

2. If b 6= 0

The form of the system is:

x(k + 1) = Ax(k) + b

Let us compute the iterates x(0), x(1), x(2), etc.

x(0) = x0

x(1) = Ax(0) + b = Ax0 + b

x(2) = Ax(1) + b = A2x0 + Ab+ b

x(3) = Ax(2) + b = A3x0 + A2b+ Ab+ b
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x(4) = Ax(3) + b = A4x0 + A3b+ A2b+ Ab+ b

So

x(k) = Akx0 + (Ak−1 + Ak−2 + · · ·+ A+ I)b.

To simplify this, observe that

(Ak−1 + Ak−2 + · · ·+ A+ I)(I − A) = I − Ak

Given that I − A is invertible, we have

x(k) = Akx0 + (I − Ak)(I − A)−1b.

Case 1: If the absolute values of A’s eigenvalues are all less than 1 (hence I − A is

invertible), then Ak tends to the zero matrix, hence x(k) → x̄ = (I − A)−1b. This

is a generalization of one-dimensional x̄ which is b
1−a = (1− a)−1b.

Case 2: If some eigenvalues have absolute values bigger than 1, then Ak blows up,

and for most x0 we have |x(k)| → ∞.
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3.2 Nonlinear Dynamical Systems

The general form for discrete dynamical systems is

x(k + 1) = f(x(k))

We have examined the case when f is linear. Now we begin our study of more general

systems in which f can be any function that is differentiable with continuous derivative.

3.2.1 Fixed points

Depending on the definition of the fixed points, finding a fixed point of the system

x(k + 1) = f(x(k)) means solving the equation x = f(x). For example, suppose the

system is [
x1(k + 1)

x2(k + 1)

]
=

[
(x1(k))2 + x2(k)

x1(k) + x2(k)− 2

]

We may write this as x(k + 1) = f(x(k)), where

f

[
u

v

]
=

[
u2 + v

u+ v − 2

]

To find a point x̄ with the property that x̄ = f(x̄), we solve

u = u2 + v

v = u+ v − 2.

Therefore, the fixed point of the system is[
2

−2

]

3.2.2 Stability

Not all fixed points are the same. We call some stable and others unstable. We begin

by illustrating these concepts with an example

Let

x(k + 1) = f(x(k)) = [x(k)]2.

31



Figure 3.8: Kinds of fixed points.

The system has two fixed points: 0 and 1. First, let us start with a number which is close

to 0, say 0.1. If we iterate x2, we see

0.1 7→ 0.01 7→ 0.0001 7→ 0.0000001 7→ · · ·.

Thus if x0 is near 0, then x(k)→ 0 as k →∞. For this reason 0 is a stable fixed point.

Now we will examine the other fixed point1. If we take a number near 1, say 1.1,

we see

1.1 7→ 1.21 7→ 1.4641 7→ 2.1436 7→ 4.5950 7→ 21.1138 7→ 445.7916 7→ · · ·.

Clearly, x(k)→∞. If we take x0 = 0.9, we see

0.9 7→ 0.81 7→ 0.6561 7→ 0.4305 7→ 0.1853 7→ 0.0343 7→ 0.0012 7→ · · ·.

Clearly x(k) → 0. In any case, starting points near (but not equal to) 1 tend to iterate

away from 1. We call 1 an unstable fixed point of the system.

Figure(3.8) illustrates the kinds of the fixed points. The fixed point is stable if

all trajectories which begin near x̄ remain near, and converge to x̄. The fixed point is

marginally stable (neutral) if the trajectories which begin near x̄ stay nearby but never

converge to x̄. Finally, the fixed point is unstable if there are trajectories which start

near x̄ and move far away from x̄.
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Chapter 4

Qualitative behavior of the difference

equation xn+1 = Axn +
βxn+γxn−k
Bxn+Cxn−k

Introduction

In this chapter we will study some qualitative behavior of the solutions of the difference

equation

xn+1 = Axn +
βxn + γxn−k
Bxn + Cxn−k

, n = 0, 1, 2, ... (4.1)

where the initial conditions x−k, · · ·, x−1, x0 are arbitrary positive real numbers and the

coefficients A, β, γ, B, C are positive constants, while k is a positive integer number.

Our concentration is on invariant intervals, semicycle analysis, and the global asymp-

totic stability of all positive solutions of Eq.(4.1).

E.M.E Zayed et al.[16] have studied Eq.(4.1), in this chapter we will give further results

and correct some wrong ones, the special case of Eq.(4.1) when A = 0 and k = 1 has been

studied in [10]. In [14] M.Saleh et al. have studied the global stability of Eq.(4.1) when

A = 0 and k is a positive integer. A more general recursive sequence of the form

xn+1 = Axn +Bxn−k +
βxn + γxn−k
Bxn + Cxn−k

, n = 0, 1, 2, ... (4.2)

has been studied in [17].
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4.1 Change of variables

The change of variables xn = γ
C
yn, which was used in [16], reduces Eq.(4.1) to the

difference equation

yn+1 = Ayn +
pyn + yn−k
qyn + yn−k

, n = 0, 1, 2, ... (4.3)

where p = β
γ

and q = B
C

with p, q ∈ (0,∞), y−k, · · ·, y−1, y0 ∈ (0,∞).

Lets verify this.

Since

xn =
γ

C
yn

xn+1 =
γ

C
yn+1

xn−k =
γ

C
yn−k

Substitute in the equation

xn+1 = Axn +
βxn + γxn−k
Bxn + Cxn−k

so
γ

C
yn+1 = A

γ

C
yn +

β γ
C
yn + γ γ

C
yn−k

B γ
C
yn + C γ

C
yn−k

and so
γ

C
yn+1 =

γ

C
Ayn +

γ
C

(βyn + γyn−k)
γ
C

(Byn + Cyn−k)

multiply both sides by C
γ

, so

yn+1 = Ayn +
βyn + γyn−k
Bγ
C
yn + γyn−k

divide the numerator and the dominator of the fraction on the righthand side by γ,

we get:

yn+1 = Ayn +

β
γ
yn + yn−k

B
C
yn + yn−k

The substitution: p = β
γ
, q = B

C
reduces the above equation to

yn+1 = Ayn +
pyn + yn−k
qyn + yn−k

, n = 0, 1, 2, ...
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To avoid a degenerate situation we’ll assume that: p 6= q.

Next we investigate the equilibrium points of Eq.(4.3) where the parameters p, q and

the initial conditions y−k, · · ·, y−1, y0 are arbitrary positive real numbers, while k is a

positive integer number.

The equilibrium points of Eq.(4.3) are the positive solutions of:

ȳ = Aȳ +
pȳ + ȳ

qȳ + ȳ

so

ȳ = ȳ(A+
p+ 1

(q + 1)ȳ
)

ȳ(1− A− p+ 1

(q + 1)ȳ
) = 0

but

ȳ 6= 0

so

1− A− p+ 1

(q + 1)ȳ
= 0

1− A =
p+ 1

(q + 1)ȳ

ȳ =
p+ 1

(q + 1)(1− A)

and so if 0 < A < 1, then the only positive equilibrium point is:

ȳ =
p+ 1

(q + 1)(1− A)
(4.4)

4.2 Linearization

In this section we derive the linearized equation of Eq.(4.3) and prove the result which

is included in [16]. To this end, we introduce a continuous function F : (0,∞)2 → (0,∞)

which is defined by:

F (u0, u1) = Au0 +
pu0 + u1

qu0 + u1

now
∂F

∂u0

= A+
(qu0 + u1)p− (pu0 + u1)q

(qu0 + u1)2
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∂F

∂u0

(ȳ, ȳ) = A+
(qȳ + ȳ)p− (pȳ + ȳ)q

(qȳ + ȳ)2

∂F

∂u0

(ȳ, ȳ) = A+
ȳ(q + 1)p− ȳ(p+ 1)q

ȳ2(q + 1)2

divide the numerator and the dominator of the fraction in the righthand side by ȳ ”since

ȳ 6= 0”, now we have:
∂F

∂u0

(ȳ, ȳ) = A+
(q + 1)p− (p+ 1)q

ȳ(q + 1)2

∂F

∂u0

(ȳ, ȳ) = A+
qp+ p− pq − q

ȳ(q + 1)2

∂F

∂u0

(ȳ, ȳ) = A+
p− q

ȳ(q + 1)2

but ȳ = p+1
(q+1)(1−A)

so
∂F

∂u0

(ȳ, ȳ) = A+
p− q

p+1
(q+1)(1−A)

(q + 1)2

∂F

∂u0

(ȳ, ȳ) = A+
p− q

(p+1)(q+1)
1−A

hence
∂F

∂u0

(ȳ, ȳ) = A+
(p− q)(1− A)

(p+ 1)(q + 1)
= ρ0 (4.5)

Also
∂F

∂u1

=
(qu0 + u1)× 1− (pu0 + u1)× 1

(qu0 + u1)2

∂F

∂u1

=
qu0 + u1 − pu0 − u1

(qu0 + u1)2
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∂F

∂u1

=
(q − p)u0

(qu0 + u1)2

hence
∂F

∂u1

(ȳ, ȳ) =
(q − p)ȳ
(qȳ + ȳ)2

∂F

∂u1

(ȳ, ȳ) =
(q − p)ȳ

(q + 1)2ȳ2

divide the numerator and the dominator by ȳ

∂F

∂u1

(ȳ, ȳ) =
(q − p)

(q + 1)2ȳ

substitute:

ȳ =
p+ 1

(q + 1)(1− A)

so
∂F

∂u1

(ȳ, ȳ) =
(q − p)

(q + 1)2 p+1
(q+1)(1−A)

∂F

∂u1

(ȳ, ȳ) =
(q − p)

(p+1)(q+1)
(1−A)

hence
∂F

∂u1

(ȳ, ȳ) =
(q − p)(1− A)

(q + 1)(p+ 1)
=
−(p− q)(1− A)

(q + 1)(p+ 1)
= ρ1 (4.6)

Then the linearized equation of Eq.(4.3) about ȳ is:

yn+1 − ρ0yn − ρ1yn−k = 0 (4.7)

where ρ0, ρ1 are given by (4.5) and (4.6)

Let yn = λn, so yn+1 = λn+1, and yn−k = λn−k

substitute in (4.7):

λn+1 − ρ0λ
n − ρ1λ

n−k = 0

divide both sides by λn−k:

λk+1 − ρ0λ
k − ρ1 = 0

This equation is called the characteristic equation.
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4.3 Local stability

In this section, we investigate the local stability of the positive solutions of Eq.(4.3).

Theorem 4.3.1 ([16])

(a) Assume that 0 < p− q < 1
2
(p+ 1)(q+ 1) and 0 < A < 1, then the positive equilibrium

point ȳ of Eq.(4.3) is locally asymptotically stable.

(b) Assume that p < q, 0 < A < 1 and A > (q−p)(1−A)
(p+1)(q+1)

, then condition (2.6) is the

necessary and sufficient condition for the asymptotic stability of the positive solutions.

Proof:

First we prove part (a) of Theorem (4.3.1)

|ρ0|+ |ρ1| = |A+
(p− q)(1− A)

(p+ 1)(q + 1)
|+ | − (p− q)(1− A)

(p+ 1)(q + 1)
|

= A+
(p− q)(1− A)

(p+ 1)(q + 1)
+

(p− q)(1− A)

(p+ 1)(q + 1)

= A+
2(p− q)(1− A)

(p+ 1)(q + 1)

=
A(p+ 1)(q + 1) + 2(p− q)(1− A)

(p+ 1)(q + 1)

From assumption

(p− q) < 1

2
(p+ 1)(q + 1)

so

|ρ0|+|ρ1| =
A(p+ 1)(q + 1) + 2(p− q)(1− A)

(p+ 1)(q + 1)
<
A(p+ 1)(q + 1) + 2× 1

2
(p+ 1)(q + 1)(1− A)

(p+ 1)(q + 1)

hence

|ρ0|+ |ρ1| <
(p+ 1)(q + 1)

(p+ 1)(q + 1)
= 1
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|ρ0|+ |ρ1| < 1

so ȳ is locally asymptotically stable according to Theorem (2.2.1).

Now we will prove part (b) of Theorem (4.3.1).

|ρ0|+ |ρ1| = |A+
(p− q)(1− A)

(p+ 1)(q + 1)
|+ | − (p− q)(1− A)

(p+ 1)(q + 1)
|

= |A− (q − p)(1− A)

(p+ 1)(q + 1)
|+ |−(p− q)(1− A)

(p+ 1)(q + 1)
|

From assumption

A >
(q − p)(1− A)

(p+ 1)(q + 1)

so

A− (q − p)(1− A)

(p+ 1)(q + 1)
> 0

also

p < q → (p− q) < 0 → −(p− q) > 0

so

|ρ0|+ |ρ1| = A− (q − p)(1− A)

(p+ 1)(q + 1)
− (p− q)(1− A)

(p+ 1)(q + 1)

= A− (q − p)(1− A)

(p+ 1)(q + 1)
+

(q − p)(1− A)

(p+ 1)(q + 1)

|ρ0|+ |ρ1| = A < 1

so condition (2.6) is a sufficient condition for the asymptotic stability of the positive

solutions of Eq.(4.3).

If k is an odd integer

We have:

ρ1 =
−(p− q)(1− A)

(p+ 1)(q + 1)
> 0
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so condition (2.6) is the necessary and sufficient condition for the asymptotic stability of

the positive solutions.

If k is an even integer

We have:

ρ0ρ1 = (A+
(p− q)(1− A)

(p+ 1)(q + 1)
)× (

−(p− q)(1− A)

(p+ 1)(q + 1)
)

=
−A(p− q)(1− A)

(p+ 1)(q + 1)
−
(

(p− q)(1− A)

(p+ 1)(q + 1)

)2

Using the assumption that:

A >
(q − p)(1− A)

(p+ 1)(q + 1)

We get

ρ0ρ1 =
A(q − p)(1− A)

(p+ 1)(q + 1)
−
(

(p− q)(1− A)

(p+ 1)(q + 1)

)2

>
(q − p)(1− A)

(p+ 1)(q + 1)
× (q − p)(1− A)

(p+ 1)(q + 1)
−
(

(p− q)(1− A)

(p+ 1)(q + 1)

)2

so

ρ0ρ1 >

(
(p− q)(1− A)

(p+ 1)(q + 1)

)2

−
(

(p− q)(1− A)

(p+ 1)(q + 1)

)2

= 0

Consequently,

ρ0ρ1 > 0

. so condition (2.6) is the necessary and sufficient condition for the asymptotic stability

of the positive solutions.

Thus the proof of Theorem (4.3.1) is now finished.

4.4 Periodic solutions

In this section we give necessary and sufficient conditions for Eq.(4.3) to have prime

period-two solutions. Some results are included in [16], and others are correction of other

results in [16].
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Theorem 4.4.1 (a) If p > q, then Eq.(4.3) has no positive solutions of prime period

two.

(b) If k is an even integer, then Eq.(4.3) has no positive solutions of prime period two.

(c) If k is an odd integer, then Eq.(4.3) has prime period two solutions

· · · , φ, ψ, φ, ψ, · · ·

if the following condition is valid:

(p− 1)(q − 1)(A+ 1) < −4(qA+ p)

where p < 1 and q > 1 while the values of φ and ψ are the (positive and distinct)

solutions of the quadratic equation

t2 − (1− p)t
(qA+ 1)

+
(qA+ p)(1− p)

(q − 1)(A+ 1)(qA+ 1)2
= 0

Remark: Notice that the previous condition is not the one which is assumed in [16]

(p− 1)(q − 1)(A+ 1) > −4(qA+ p)

and we will prove that our condition is the right one.

Proof:

First of all, we prove part (a) in the case p > q. Assume for the sake of contradiction that

there exists distinctive positive real numbers φ and ψ such that

· · ·, φ, ψ, φ, ψ, · · ·

is a prime period two solution of Eq.(4.3).

If k is odd, then yn+1 = yn−k, so from Eq.(4.3) we have

φ = Aψ +
pψ + φ

qψ + φ
(4.8)

and

ψ = Aφ+
pφ+ ψ

qφ+ ψ
(4.9)
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From (4.8)

φ =
Aψ(qψ + φ) + (pψ + φ)

qψ + φ

so

φ(qψ + φ) = Aψ(qψ + φ) + (pψ + φ)

Thus

qφψ + φ2 = Aqψ2 + Aψφ+ pψ + φ (4.10)

From (4.9)

ψ(qφ+ ψ) = Aφ(qφ+ ψ) + pφ+ ψ

so

qφψ + ψ2 = Aqφ2 + Aψφ+ pφ+ ψ (4.11)

By subtracting (4.11) from (4.10) we get

φ2 − ψ2 = Aq(ψ2 − φ2) + p(ψ − φ) + (φ− ψ)

(φ− ψ)(φ+ ψ) = Aq(ψ − φ)(ψ + φ) + p(ψ − φ) + (φ− ψ)

Divide both sides by (ψ − φ) since we know that φ and ψ are distinct. Thus

−(φ+ ψ) = Aq(ψ + φ) + p− 1

1− p = (ψ + φ)(Aq + 1)

so

φ+ ψ =
1− p
qA+ 1

(4.12)

while by adding (4.10) to (4.11) we get

2qφψ + φ2 + ψ2 = Aq(ψ2 + φ2) + 2Aψφ = p(ψ + φ) + (φ+ ψ)

(2q − 2A)φψ = (qA− 1)(φ2 + ψ2) + (p+ 1)(φ+ ψ)

Add 2(qA− 1)φψ to both sides

2(q − A+ qA− 1)φψ = (qA− 1)(φ2 + ψ2 + 2φψ) + (p+ 1)(φ+ ψ)

2(q − A+ qA− 1)φψ = (qA− 1)(φ+ ψ)2 + (p+ 1)(φ+ ψ) (4.13)
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Substitute (4.12) in (4.13)

2(q − A+ qA− 1)φψ = (qA− 1)

(
1− p
qA+ 1

)2

+ (p+ 1)

(
1− p
qA+ 1

)
Multiply the last term by (qA+1)

(qA+1)

2(q − A+ qA− 1)φψ =
(qA− 1)(1− p)2

(qA+ 1)2
+

(1 + p)(1− p)(qA+ 1)

(qA+ 1)2

2(q − A+ qA− 1)φψ =
(qA− 1)(1− p)2 + (1− p2)(qA+ 1)

(qA+ 1)2

2(q − A+ qA− 1)φψ =
(qA− 1)(1− 2p+ p2) + (qA+ 1− p2qA− p2)

(qA+ 1)2

2(q − A+ qA− 1)φψ =
(qA− 2pqA+ p2qA− 1 + 2p− p2) + (qA+ 1− p2qA− p2)

(qA+ 1)2

2(q − A+ qA− 1)φψ =
qA− 2pqA+ p2qA− 1 + 2p− p2 + qA+ 1− p2qA− p2

(qA+ 1)2

2(q − A+ qA− 1)φψ =
2qA− 2pqA+ 2p− 2p2

(qA+ 1)2

2(q − A+ qA− 1)φψ =
2(qA− pqA+ p− p2)

(qA+ 1)2

(q − A+ qA− 1)φψ =
(qA− pqA+ p− p2)

(qA+ 1)2

φψ [q(A+ 1)− (A+ 1)] =
qA(1− p) + p(1− p)

(qA+ 1)2
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φψ(A+ 1)(q − 1) =
(1− p)(qA+ p)

(qA+ 1)2

so

φψ =
(1− p)(qA+ p)

(qA+ 1)2(A+ 1)(q − 1)
(4.14)

we know that φ and ψ are positive real numbers, so φψ is positive.

Thus there are two probabilities:

(1− p)(qA+ p) > 0 and (qA+ 1)2(A+ 1)(q − 1) > 0 (4.15)

or

(1− p)(qA+ p) < 0 and (qA+ 1)2(A+ 1)(q − 1) < 0 (4.16)

we know that

(qA+ p) > 0, (qA+ 1)2 and (A+ 1) > 0

From (4.15)

(q − 1) > 0 → q > 1 and (1− p) > 0 → p < 1

but from assumption p > q, so p > q > 1 and consequently p > 1 which is a contradiction.

Thus (4.15) is not acceptable.

From (4.16)

(1− p) < 0 and we know that φ+ ψ = 1−p
qA+1

since (1− p) < 0, we conclude that (φ+ ψ) < 0 which contradicts our assumption that φ

and ψ are positive real numbers.

Thus (4.16) is not acceptable.

The proof of part (a) is now finished in the case that k is odd, the case when k is

even is part(b) of the theorem.

We now start proving part (b) of the theorem.

For the sake of contradiction we assume that there exists a prime period two solution

of Eq.(4.3)
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· · · , φ, ψ, φ, ψ, · · ·

where φ and ψ are distinct positive real numbers.

If k is even, then yn = yn−k, from Eq.(4.3) it follows that:

φ = Aψ +
pψ + ψ

qψ + ψ
= Aψ +

p+ 1

q + 1
(4.17)

and

ψ = Aφ+
pφ+ φ

qφ+ φ
= Aφ+

p+ 1

q + 1
(4.18)

subtract Eq.(4.18) from Eq.(18)

φ− ψ = A(ψ − φ) = −A(φ− ψ)

so we conclude that A = −1 and here is the contradiction.

The proof of part (b) is now finished.

It remains to prove part (c) of the theorem

Assume that Eq.(4.3) has prime period two solution

· · · , φ, ψ, φ, ψ, · · ·

where φ and ψ are distinct positive real numbers.

If k is odd, then yn+1 = yn−k.

We will use (4.12) and (4.14) which we found in the proof of part (1)

φ+ ψ =
1− p
qA+ 1

φψ =
(1− p)(qA+ p)

(qA+ 1)2(A+ 1)(q − 1)

Now consider the quadratic equation

t2 − (1− p)
(qA+ 1)

t+
(qA+ p)(1− p)

(q − 1)(A+ 1)(qA+ 1)2
= 0

so φ and ψ are the positive and distinct solutions of the above quadratic equation, and

we get

t =

(1−p)
(qA+1)

∓
√

(1−p)2
(qA+1)2

− 4(qA+p)(1−p)
(q−1)(A+1)(qA+1)2

2
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t =

(1−p)
(qA+1)

∓ 1
qA+1

√
(1− p)2 − 4(qA+p)(1−p)

(q−1)(A+1)

2

t =
(1− p)∓

√
(1− p)2 − 4(qA+p)(1−p)

(q−1)(A+1)

2(qA+ 1)

so

t =
(1− p)∓ δ
2(qA+ 1)

where

δ =

√
(1− p)2 − 4(qA+ p)(1− p)

(q − 1)(A+ 1)

Thus, we deduce that

(1− p)2 − 4(qA+ p)(1− p)
(q − 1)(A+ 1)

> 0

(1− p)2 >
4(qA+ p)(1− p)
(q − 1)(A+ 1)

From assumption p < 1, so 1− p > 0

Now divide both sides of the inequality by (1− p)

(1− p) > 4(qA+ p)

(q − 1)(A+ 1)

(1− p)(q − 1)(A+ 1) > 4(qA+ p)

(p− 1)(q − 1)(A+ 1) < −4(qA+ p)

The proof is now complete.

4.5 Invariant intervals

In this section we will find the invariant intervals which were not identified in [16].

Theorem 4.5.1 Suppose that p > q, 0 < A < 1, A2(p+ p2) + q < p, and assume that for

some N ≥ 0

yN−k+1, · · · , yN−1, yN ∈
[
A+ 1, p

q
(A+ 1)

]
then

yn ∈
[
A+ 1, p

q
(A+ 1)

]
, for all n > N

46



Proof:

yn+1 = Ayn +
pyn + yn−k
qyn + yn−k

≥ Ayn +
qyn + yn−k
qyn + yn−k

so

yn+1 ≥ Ayn + 1

but we know that for some N > 0, A+ 1 ≤ yN ≤ p
q
(A+ 1), so

yn+1 ≥ Ayn + 1 ≥ A(A+ 1) + 1 = A2 + A+ 1

yn+1 ≥ A2 + A+ 1 > A+ 1

Thus

yn+1 ≥ A + 1

Now assume

yn+1 = f(x, y) = Ax+
px+ y

qx+ y

f(x, y) is increasing in x for each fixed y, and decreasing in y for each fixed x, since:

∂f

∂x
= A+

(qx+ y)× p− (px+ y)× q
(qx+ y)2

∂f

∂x
= A+

qxp+ yp− pxq − qy
(qx+ y)2

since p > q we have
∂f

∂x
= A+

y(p− q)
(qx+ y)2

> 0

and
∂f

∂y
=

(qx+ y)× 1− (px+ y)× 1

(qx+ y)2

but p > q, so
∂f

∂y
=
qx+ y − px− y

(qx+ y)2
=

(q − p)x
(qx+ y)2

< 0

Return to our equation:

yn+1 = f(yn, yn−k)
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f(yn, yn−k) is increasing in yn for each fixed yn−k, and f(yn, yn−k) is decreasing in yn−k

for each fixed yn.

We know that for some N > 0, A+ 1 ≤ yN ≤ p
q
(A+ 1)

so

yn+1 = f(yn, yn−k) ≤ f

(
p

q
(A+ 1), yn−k

)

yn+1 ≤ f

(
p

q
(A+ 1), yn−k

)
≤ f

(
p

q
(A+ 1), A+ 1

)

yn+1 ≤ A
p

q
(A+ 1) +

pp
q
(A+ 1) + (A+ 1)

q p
q
(A+ 1) + (A+ 1)

yn+1 ≤ A2p

q
+
Ap

q
+

(p
2

q
+ 1)(A+ 1)

(pq
q

+ 1)(A+ 1)

yn+1 ≤
Ap

q
+ A2p

q
+

(p
2

q
+ 1)

(pq
q

+ 1)
(4.19)

but from our assumption:

A2(p+ p2) + q < p

A2p+ A2p2 + q < p

Add p2 to both sides of the inequality.

A2p+ A2p2 + q + p2 < p+ p2

A2p(1 + p) + q + p2 < p+ p2

Divide both sides by q(p+ 1)

A2p(1 + p) + q + p2

q(p+ 1)
<

p+ p2

q(p+ 1)
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A2p(1 + p)

q(p+ 1)
+

q + p2

q(p+ 1)
<
p(1 + p)

q(p+ 1)

A2p

q
+

q + p2

q(p+ 1)
<
p

q

A2p

q
+

q+p2

q

q(p+1)
q

<
p

q

A2p

q
+

p2

q
+ 1

pq
q

+ 1
<
p

q

Now return to (4.19)

yn+1 ≤
Ap

q
+ A2p

q
+

(p
2

q
+ 1)

(pq
q

+ 1)
≤ Ap

q
+
p

q

so

yn+1 ≤
p

q
(A + 1)

The proof is complete.

Theorem 4.5.2 Suppose that
1
q
< p < q, Aq > q − p, A2 < A− q + p, 0 < A < 1,

Assume that for some N ≥ 0

yN−k+1, · · · , yN−1, yN ∈
[

1
q
, A
q−p

]
then

yn ∈
[

1
q
, A
q−p

]
, for all n > N

Proof:

First of all A
q−p >

1
q
, since from the assumption

Aq > q − p → Aq
q−p > 1, since (q − p) > 0

so
A

q − p
>

1

q
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and since p < q we have

yn+1 = Ayn +
pyn + yn−k
qyn + yn−k

≤ Ayn +
qyn + yn−k
qyn + yn−k

yn+1 ≤ Ayn +
qyn + yn−k
qyn + yn−k

= Ayn + 1

But we assumed that for some N > 0, 1
q
≤ yN ≤ A

q−p , so

yn+1 ≤ Ayn + 1 ≤ A× A

q − p
+ 1

and

yn+1 ≤
A2

q − p
+ 1 (4.20)

we assumed that A2 < A− q + p, so

A2 + q − p < A

Divide both sides of the inequality by q − p

A2 + q − p
q − p

<
A

q − p

A2

q − p
+ 1 <

A

q − p
Return to (4.20)

yn+1 ≤
A2

q − p
+ 1 <

A

q − p
so

yn+1 ≤
A

q− p

Now assume

yn+1 = f(x, y) = Ax+
px+ y

qx+ y

f(x, y) is increasing in y for each fixed x, since

∂f

∂y
=

(qx+ y)× 1− (px+ y)× 1

(qx+ y)2
=

(q − p)x
(qx+ y)2

> 0

but, in general, f(x, y) does not behave monotonically in x for fixed y and this is

a mistake in [16], because they said in the proof of Thm.(6.2) that ”the function
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F (x, y) is decreasing in x for each fixed y, and increasing in y for each fixed x”.

Now we will clarify this:

∂f

∂x
= A+

(qx+ y)× p− (px+ y)× q
(qx+ y)2

∂f

∂x
= A+

qxp+ yp− pxq − qy
(qx+ y)2

∂f

∂x
= A+

y(p− q)
(qx+ y)2

but p < q, so
y(p− q)
(qx+ y)2

< 0

1. If |A| > | y(p−q)
(qx+y)2

| = y(q−p)
(qx+y)2

, then ∂f
∂x

is positive.

2. If |A| < | y(p−q)
(qx+y)2

| = y(q−p)
(qx+y)2

, then ∂f
∂x

is negative.

Under our assumptions f(x, y) is increasing in x for each fixed y since y < A
q−p , and x > 1

q

as we will clarify now

y(q − p) < A (4.21)

and

xq > 1 (4.22)

From (4.21) and (4.22) we have

A > y(q − p) > y(q − p)
xq

This is true since xq > 1

Also, since xq + y > xq we conclude that

A >
y(q − p)
xq + y

but we know that (xq + y)2 > xq + y > xq > 1 so

A >
y(q − p)
xq + y

>
y(q − p)
(xq + y)2
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Consequently,

A >
y(q − p)
(xq + y)2

Thus under our assumptions f(x, y) is increasing in both arguments.

Return to

yn+1 = f(x, y) = Ax+
px+ y

qx+ y

f(x, y) ≥ f

(
1

q
, y

)
> f

(
1

q
,
1

q

)
f(x, y) > f

(
1

q
,
1

q

)
= A× 1

q
+
p× 1

q
+ 1

q

q × 1
q

+ 1
q

f(x, y) > A× 1

q
+

(p+ 1)× 1
q

(q + 1)× 1
q

f(x, y) ≥ A

q
+

(p+ 1)

(q + 1)
>

(p+ 1)

(q + 1)
(4.23)

but since we assumed that

p >
1

q

we have

pq > 1

Add (q) to both sides to get

pq + q > 1 + q

Divide both sides by (1 + q)
(p+ 1)q

1 + q
>

1 + q

1 + q

(p+ 1)q

1 + q
> 1

Divide both sides by (q)
(p+ 1)

(1 + q)
>

1

q

substitute in (4.23)

f(x, y) ≥ (p+ 1)

(q + 1)
>

1

q

Thus

yn+1 ≥
1

q

The proof is now complete.
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4.6 Semi-cycle analysis

Theorem 4.6.1 [14]

Assume that f ∈ [(0,∞)× (0,∞), (0,∞)] is such that : f(x, y) is increasing (respectively,

decreasing) in x for each fixed y, and f(x, y) is decreasing (respectively, increasing) in y

for each fixed x. Let x̄ be a positive equilibrium of Eq.(2.4). Then, except possibly for the

first semi-cycle, every oscillatory solution of Eq.(2.4) has semi-cycle of length at least k.

Furthermore, if we assume that

f(u, u) = x̄ for every u

and

f(x, y) < x for every x̄ < y < x

then {xn} oscillates about the equilibrium x̄ with semi-cycles of length k + 1 or k + 2,

except possibly for the first semi-cycle which may have length k. The extreme in each

semi-cycle occurs in the first term if the semi-cycle has two terms and in the second term

if the semi-cycle has three terms, and in the k+ 1 term if the semi-cycle has k+ 2 terms.

Corollary 1 Assume that p > q, then except possibly for the first semi-cycle every oscil-

latory solution of Eq.(4.3) has semi-cycle of length at least k.

Proof: The proof follows from Theorem (4.6.1), since under the assumption that p > q,

f(x, y) is increasing in x for each fixed y and decreasing in y for each fixed x, as we have

proved in the previous section.

4.7 Global stability

Theorem 4.7.1 Assume that

p > q, 0 < A < 1, (A2P+A2p2) < (p−q) < 1
2
(p+1)(q+1) and p−1 < 2q(1−A2)

, then the positive equilibrium point of Eq.(4.3) is globally asymptotically stable.

Proof:

We will apply Theorem (2.5.1) in the proof using the interval
[
A+ 1, p

q
(A+ 1)

]
Under these assumptions we have shown in part (a) of Theorem (4.3.1) that ȳ is locally
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stable. We need to show that ȳ is a global attractor. To this end, we consider the function

F (x, y) = Ax+
px+ y

qx+ y

We have shown that when p > q, f(x, y) is increasing in x for each fixed y, and decreasing

in y for each fixed x.

Suppose that (m,M) ∈
[
A+ 1, p

q
(A+ 1)

]
×
[
A+ 1, p

q
(A+ 1)

]
is a solution of the system

M = F (M,m) and m = F (m,M)

Then we get

M = AM +
pM +m

qM +m

and

m = Am+
pm+M

qm+M

so

(1− A)M =
pM +m

qM +m

and

(1− A)m =
pm+M

qm+M

From which we have

q(1− A)M2 + (1− A)mM = pM +m (4.24)

and

q(1− A)m2 + (1− A)mM = pm+M (4.25)

Subtract (4.25) from (4.24) to get

q(1− A)(M2 −m2) = p(M −m)− (M −m)

q(1− A)(M −m)(M +m) = p(M −m)− (M −m)

(M −m) (q(1− A)(M +m)− p+ 1) = 0 (4.26)

If q(1− A)(M +m)− p+ 1 = 0, then m+M = p−1
q−qA

But, this contradicts our assumption that p− 1 < 2q(1− A2), and we will clarify this.

p− 1 < 2q − 2qA2
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p− 1 < 2q − 2qA2
︷ ︸︸ ︷
+2qA− 2qA

p− 1 < 2Aq + 2q − 2qA2 − 2qA

p− 1 < q(2A+ 2)− qA(2A+ 2)

p− 1 < (q − qA)(2A+ 2)

p− 1

q − qA
< (2A+ 2)

But we have assumed that m > A + 1 and M > A + 1, so m + M > 2A + 2 and here is

the contradiction.

Thus, m−M = 0, and m = M . According to Theorem (2.5.1) the proof is complete.

Theorem 4.7.2 Assume that
1
q
< p < q, Aq > q − p, A2 < A− q + p, 0 < A < 1 and A > (q−p)(1−A)

(p+1)(q+1)

, then the positive equilibrium point of Eq.(4.3) is globally asymptotically stable.

Proof:

We will apply Theorem (2.5.4) in the proof using the interval
[

1
q
, A
q−p

]
Under these assumptions we have shown in part (b) of Theorem (4.3.1) that ȳ is locally

stable. We need to show that ȳ is a global attractor. To this end, we consider the function

F (x, y) = Ax+
px+ y

qx+ y

We have shown that F (x, y) is increasing in both arguments in this interval.

Suppose that (m,M) ∈
[

1
q
, A
q−p

]
×
[

1
q
, A
q−p

]
is a solution of the system

m = F (m,m) and M = F (M,M)

Then we get

m = Am+
pm+m

qm+m

and

M = AM +
pM +M

qM +M

so

(1− A)m =
(p+ 1)m

(q + 1)m
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and

(1− A)M =
(p+ 1)M

(q + 1)M

Now we have

(1− A)(q + 1)m = p+ 1 (4.27)

and

(1− A)(q + 1)M = p+ 1 (4.28)

Subtract (4.28) from (4.27) to get

(1− A)(q + 1)(m−M) = 0 (4.29)

Thus, m−M = 0, and m = M . According to Theorem (2.5.4) the proof is complete.

Remark: The main problem in [16] was in using the global stability theorems with-

out finding invariant intervals which led to results which are not accurate.

4.8 Numerical Discussion

In this section we give numerical examples which support the theoretical discussion in

the previous sections. These examples are of the form of Eq.(4.3) with different values of

p, q, A, k and different initial conditions. These examples were carried out by MATLAB

6.5.
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Example 1:

Assume that Equation (4.3) holds, take k = 1, A = .1, β = .001, γ = 1, B = 300 and

C = 3. So the equation will be reduced to the following

xn+1 = .1xn +
.001xn + xn−1

300xn + 3xn−1

with the initial conditions x0 = x1 = .33, and n = 0, 1, 2, ....

or equivalently

yn+1 = .1yn +
.001yn + yn−1

100yn + yn−1

with the initial conditions y0 = 1, y1 = 1, and n = 0, 1, 2, ...

This example supports our result in Theorem (4.4.1), since the assumptions of this

theorem are existent in this example as we will clarify now

1. (k = 1) is an odd integer.

2. [(p− 1)(q − 1)(A+ 1) = −108.7911] < [−4(qA+ p) = −40.004].

3. (p = .001) < 1.

4. (q = 100) > 1.

By theory, Eq.(4.3) has prime periodic two solutions as it is obvious from Figure (4.1).

Example 2:

Assume that Eq.(4.3) holds, take k = 3, A = .1, β = 50, γ = 5, B = 18, C = 2 and

n = 0, 1, 2, .... So the equation will be reduced to the following

xn+1 = .1xn +
50xn + 5xn−3

17xn + 2xn−3

with the initial conditions x0 = 10, x1 = 12.5, x2 = .25 and x3 = 5

or equivalently

yn+1 = .1yn +
10yn + yn−3

8.5yn + yn−3

with the initial conditions y0 = 4, y1 = 5, y2 = .1 and y3 = 2

This example supports our result in Theorem (4.7.1), since the assumptions of this

theorem are existent in this example as we will clarify now

1. (p = 10) > (q = 8.5).
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2. 0 < (A = .1) < 1

3. ([p− 1] = 9) < ([2q(1− A2)] = 16.83)

4. ([A2P + A2p2] = 1.1) < ([p− q] = 1.5) < ([1
2
(p+ 1)(q + 1)] = 52.25)

By theory, the positive equilibrium point x̄ = p+1
(1−A)(q+1)

= 10+1
(1−.1)(8.5+1)

= 1.286 is globally

asymptotically stable as it is obvious from Figure (4.2).

Example 3:

Assume that Eq.(4.3) holds, take k = 2, A = .2, β = 19.8, γ = 2, B = 10, C = 1 and

n = 0, 1, 2, .... So the equation will be reduced to the following

xn+1 = .2xn +
19.8xn + 2xn−2

10xn + xn−2

with the initial conditions x0 = 8, x1 = 10 and x2 = .2

or equivalently

yn+1 = .2yn +
9.9yn + yn−2

10yn + yn−2

with the initial conditions y0 = 4, y1 = 5 and y2 = .1

This example supports our result in Theorem (4.7.2), since the assumptions of this

theorem are existent in this example as we will clarify now

1. (1
q

= .1) < (p = 9.9) < (q = 10)

2. 0 < (A = .2) < 1

3. (Aq = 2) > ([q − p] = .1)

4. (A2 = .04) < ([A− q + p] = .1)

5. (A = .2) > ([ (q−p)(1−A)
(p+1)(q+1)

] = 6.6722× 10−4)

By theory, the positive equilibrium point x̄ = p+1
(1−A)(q+1)

= 9.9+1
(1−.2)(10+1)

= 1.2386 is globally

asymptotically stable as it is obvious from Figure (4.3).
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Figure 4.1: xn+1 = .1xn + .001xn+xn−1

300xn+3xn−1
has prime periodic two solutions
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Figure 4.2: The behavior of the positive equilibrium point of xn+1 = .1xn + 50xn+5xn−3

17xn+2xn−3

60



Figure 4.3: The behavior of the positive equilibrium point of xn+1 = .2xn + 19.8xn+2xn−2

10xn+xn−2
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Chapter 5

Qualitative behavior of the difference

equation xn+1 = Axn +
pxn+xn−k
q+xn−k

Introduction

In this chapter we will study some qualitative behavior of the solutions of the difference

equation

xn+1 = Axn +
pxn + xn−k
q + xn−k

, n = 0, 1, 2, ... (5.1)

where the initial conditions x−k, · · ·, x−1, x0 are arbitrary positive real numbers and the

coefficients A, p, q are positive constants, while k is a positive integer number.

Our concentration is on invariant intervals, periodic solutions, and the global asymp-

totic stability of all positive solutions of Eq.(5.1).

The global stability of Eq.(5.1) for A = 0 has been studied in [13]. Kulenvic et al.[11]

studied Eq.(5.1) when A = 0 and k = 1. A more general recursive sequence of the form

xn+1 = Axn +Bxn−k +
pxn + xn−k
q + xn−k

, n = 0, 1, 2, ... (5.2)

has been studied in [15].

5.1 Equilibrium points

In this section we will find the equilibrium points of Eq.(5.1)

xn+1 = Axn +
pxn + xn−k
q + xn−k
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According to the definition of the equilibrium point we have:

x̄ = Ax̄+
px̄+ x̄

q + x̄

(1− A)x̄ =
(p+ 1)x̄

q + x̄[
(1− A)− p+ 1

q + x̄

]
x̄ = 0

so

x̄ = 0

or

(1− A)− (p+ 1)

q + x̄
= 0

If (1− A)− (p+1)
q+x̄

= 0, then 1− A = (p+1)
q+x̄

(1− A)(q + x̄) = p+ 1

q − qA+ x̄− Ax̄ = p+ 1

x̄ =
p+ 1− q + qA

1− A

x̄ =
(p− q) + (1 + qA)

1− A
(5.3)

Thus x̄ is a positive equilibrium point if one of the following two cases is valid:

1. p > q and 0 < A < 1

2. p < q, (q − p) < 1 + qA and 0 < A < 1

Lemma 1 If p > q, 0 < A < 1, then the positive equilibrium point satisfies the inequality

x̄ > q
p

Proof:

From (5.3) we deduce that:

x̄ =
(p− q) + (1 + qA)

1− A
=
p+ 1− q + qA

1− A
=

(p+ 1)− q(1− A)

1− A

x̄ =
p+ 1

1− A
− q > q + 1

1− A
− q =

q + 1− q + qA

1− A

63



x̄ >
1 + qA

1− A
= [1 + qA]

[
1

1− A

]
Thus

x̄ > [1 + qA][1 + A+ A2 + · · ·] = 1 + A+ A2 + · · ·+ qA+ qA2 + qA3 + · · ·

but all terms on the right side are positive so

x̄ > 1 >
q

p

5.2 Linearization

In this section we derive the linearized equation of Eq.(5.1) about its equilibrium points.

To this end, we introduce a continuous function F : (0,∞)2 → (0,∞) such that

F (x, y) = Ax+ px+y
q+y

5.2.1 The linearized equation about the positive equilibrium

point

∂F (x, y)

∂x
= A+

(q + y)p

(q + y)2
= A+

p

q + y

∂F (x̄, x̄)

∂x
= A+

p

q + x̄

Substituting x̄ from (5.3) we have

∂F (x̄, x̄)

∂x
= A+

p

q + (p−q)+(1+qA)
1−A

∂F (x̄, x̄)

∂x
= A+

p
q(1−A)+p−q+1+qA

1−A

∂F (x̄, x̄)

∂x
= A+

p
q−qA+p−q+1+qA

1−A

hence
∂F (x̄, x̄)

∂x
= A+

p(1− A)

p+ 1
= ρ0 (5.4)

also
∂F (x, y)

∂y
=

(q + y)× 1− (px+ y)× 1

(q + y)2
=

q − px
(q + y)2
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so
∂F (x̄, x̄)

∂y
=

q − px̄
(q + x̄)2

Substituting x̄ = (p−q)+(1+qA)
1−A we have

∂F (x̄, x̄)

∂y
=

q − p (p−q)+(1+qA)
1−A(

q + (p−q)+(1+qA)
1−A

)2

∂F (x̄, x̄)

∂y
=

q(1−A)−p(p−q+1+qA)
1−A(

q(1−A)+p−q+1+qA
1−A

)2

∂F (x̄, x̄)

∂y
=

q−qA−p2+pq−p−qAp
1−A

(q−qA+p−q+1+qA)2

(1−A)2

∂F (x̄, x̄)

∂y
=

(−qA−qAp)+(q+pq)+(−p2−p)
1−A

(q−qA+p−q+1+qA)2

(1−A)2

∂F (x̄, x̄)

∂y
=
−qA(1 + p) + q(1 + p)− p(1 + p)

(p+ 1)2
(1− A)

∂F (x̄, x̄)

∂y
=

(p+ 1)(−qA+ q − p)(1− A)

(p+ 1)2

∂F (x̄, x̄)

∂y
=
−(qA− q + p)(1− A)

p+ 1

Thus
∂F (x̄, x̄)

∂y
=
−(1− A)(p− q + qA)

p+ 1
= ρ1 (5.5)

so, the linearized equation about the positive equilibrium point is

zn+1 − ρ0zn − ρ1zn−k = 0

where ρ0 and ρ1 are given by (5.4) and (5.5).
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5.2.2 The linearized equation about the zero equilibrium point

∂F (x, y)

∂x
= A+

(q + y)p

(q + y)2
= A+

p

q + y

∂F (0, 0)

∂x
= A+

p

q
= ρ̄0 (5.6)

and
∂F (x, y)

∂y
=

q − px
(q + y)2

so
∂F (0, 0)

∂y
=

q

q2
=

1

q
= ρ̄1 (5.7)

so, the linearized equation about the zero equilibrium point is

zn+1 − ρ̄0zn − ρ̄1zn−k = 0

where ρ̄0 and ρ̄1 are given by (5.6) and (5.7).

5.3 Local stability

In this section we investigate the local stability of the positive solutions of Eq.(5.1)

Theorem 5.3.1 The zero equilibrium point ( x̄ = 0 ) is locally asymptotically stable if

p− q < −(1 + qA). In particular, if p− q ≥ −(1 + qA), then x̄ = 0 is unstable.

Proof:

First suppose that p− q < −(1 + qA)

|ρ̄0|+ |ρ̄1| = |A+
p

q
|+ |1

q
| = A+

p

q
+

1

q

= A+
p+ 1

q
=
Aq + p+ 1

q

but from assumption

p− q < −1− qA

so

p+ 1 + qA < q

and
Aq + p+ 1

q
< 1
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Thus

|ρ̄0|+ |ρ̄1| < 1

and so the zero equilibrium point is locally asymptotically stable under this condition

according to Theorem (2.2.1).

In particular, if p− q ≥ −(1 + qA), then |ρ̄0|+ |ρ̄1| = Aq+p+1
q

but from assumption

p+ 1 + qA ≥ q

and
p+ 1 + qA

q
≥ 1

so

|ρ̄0|+ |ρ̄1| =
Aq + p+ 1

q
≥ 1

But in addition we have one of the following two cases holds:

1. k is an odd integer and

ρ̄1 =
1

q
> 0

2. k is an even integer and

ρ̄0ρ̄1 = (A+
p

q
)(

1

q
) > 0

and so condition (2.6) is a necessary condition for the asymptotic stability according to

Theorem(2.2.1), which is not true under this condition as we have proved previously.

Thus x̄ = 0 is unstable in this case.

Theorem 5.3.2 If p > q, 0 < A < 1 and p − q + qA < 1, then the positive equilibrium

point is locally asymptotically stable.

Proof:

|ρ0|+ |ρ1| = |A+
p(1− A)

p+ 1
|+ |−(1− A)(p− q + qA)

p+ 1
|

= A+
p(1− A)

p+ 1
+ |−(1− A)(p− q + qA)

p+ 1
|
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but we know that | − x| = |x|, and so

|ρ0|+ |ρ1| = A+
p(1− A)

p+ 1
+ |(1− A)(p− q + qA)

p+ 1
|

From assumption p > q, so p− q > 0 and p− q + qA > 0. Consequently,

|ρ0|+ |ρ1| = A+
p(1− A)

p+ 1
+

(1− A)(p− q + qA)

p+ 1

since p− q + qA < 1 we have

|ρ0|+|ρ1| =
A(p+ 1) + p(1− A) + (1− A)(p− q + qA)

p+ 1
<
A(p+ 1) + p(1− A) + (1− A)

p+ 1

and so

|ρ0|+ |ρ1| <
A(p+ 1) + (1− A)(p+ 1)

p+ 1
=

(p+ 1)(A+ 1− A)

p+ 1
= 1

Hence,

|ρ0|+ |ρ1| < 1

This proves that the positive equilibrium point is locally asymptotically stable under these

conditions.

Theorem 5.3.3 If p < q, 0 < A < 1, q − p < Aq and p− q + qA < 1, then the positive

equilibrium point is locally asymptotically stable.

Proof:

First we notice that under these assumptions we have a positive equilibrium point

since p < q, 0 < A < 1 and q − p < Aq < Aq + 1

Now we will check the local stability:

|ρ0|+ |ρ1| = |A+
p(1− A)

p+ 1
|+ |−(1− A)(p− q + qA)

p+ 1
|

= A+
p(1− A)

p+ 1
+ |−(1− A)(p− q + qA)

p+ 1
|

but we know that | − x| = |x|, and so

|ρ0|+ |ρ1| = A+
p(1− A)

p+ 1
+ |(1− A)(p− q + qA)

p+ 1
|

From assumption q − p < Aq, so Aq + p− q > 0. Consequently,

|ρ0|+ |ρ1| = A+
p(1− A)

p+ 1
+

(1− A)(p− q + qA)

p+ 1
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since p− q + qA < 1 we have

|ρ0|+|ρ1| =
A(p+ 1) + p(1− A) + (1− A)(p− q + qA)

p+ 1
<
A(p+ 1) + p(1− A) + (1− A)

p+ 1
= 1

This proves that the positive equilibrium point is locally asymptotically stable under these

conditions.

Theorem 5.3.4 If p < q, 0 < A < 1 and Aq < q − p < Aq + 1, then the positive

equilibrium point is locally asymptotically stable. Furthermore, condition (2.6) can be

considered as a necessary and sufficient condition for the asymptotic stability of Eq.(5.1).

Proof:

|ρ0|+ |ρ1| = |A+
p(1− A)

p+ 1
|+ |−(1− A)(p− q + qA)

p+ 1
|

= A+
p(1− A)

p+ 1
+ |−(1− A)(p− q + qA)

p+ 1
|

= A+
p(1− A)

p+ 1
+ |(1− A)(p− q + qA)

p+ 1
|

since Aq < q − p, and so Aq − q + p < 0 we have

|ρ0|+ |ρ1| = A+
p(1− A)

p+ 1
− (1− A)(p− q + qA)

p+ 1

=
A(p+ 1) + p(1− A)− (1− A)(−[−p+ q − qA])

p+ 1

=
A(p+ 1) + p(1− A) + (1− A)(q − p− qA)

p+ 1

but we know that q − p < Aq + 1, and so q − p− Aq < 1. Thus

|ρ0|+ |ρ1| <
A(p+ 1) + p(1− A) + (1− A)

p+ 1
= 1

This proves that the positive equilibrium point is locally asymptotically stable. Thus,

condition (2.6) is sufficient for the asymptotic stability of Eq.(5.1). In addition, we see

that one of the following two cases is valid:

1. k is an odd integer, we know that Aq < q − p and Aq − q + p < 0 so

ρ1 =
−(1− A)(p− q + qA)

p+ 1
> 0
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2. k is an even integer and

ρ0ρ1 =

(
A+

p(1− A)

p+ 1

)(
−(1− A)(p− q + qA)

p+ 1

)
> 0

Thus, according to Theorem (2.2.1) condition (2.6) is also necessary for the asymptotic

stability of Eq.(5.1).

5.4 Periodic solutions

In this section, we investigate the periodic character of the positive solutions of Eq.(5.1)

Theorem 5.4.1 Equation(5.1) has no positive solutions of prime period two for all pos-

itive A, p, q

Proof:

1. If k is an even integer.

Assume for the sake of contradiction that there exists distinct positive real numbers

φ and ψ such that

· · · , φ, ψ, φ, ψ, · · ·

is a prime period two solution of Eq.(5.1).

Since k is even, xn−k = xn. Substituting in Eq.(5.1) we get

ψ = Aφ+
pφ+ φ

q + φ
(5.8)

and

φ = Aψ +
pψ + ψ

q + ψ
(5.9)

From (5.8) we have

ψ(q + φ) = Aφ(q + φ) + (p+ 1)φ

so

ψq + φψ = Aqφ+ Aφ2 + pφ+ φ (5.10)

From (5.9) we have

φ(q + ψ) = Aψ(q + ψ) + pψ + ψ
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Thus,

φq + φψ = Aqψ + Aψ2 + pψ + ψ (5.11)

By subtracting (5.11) from (5.10) we have

q(ψ − φ) = Aq(φ− ψ) + A(φ2 − ψ2) + p(φ− ψ) + (φ− ψ)

q(ψ − φ) = −Aq(ψ − φ) + A(φ− ψ)(φ+ ψ)− p(ψ − φ)− (ψ − φ)

q(ψ − φ) = −Aq(ψ − φ)− A(ψ − φ)(ψ + φ)− p(ψ − φ)− (ψ − φ)

(ψ − φ)(q + Aq + A[ψ + φ] + p+ 1) = 0

(ψ − φ)(q[1 + A] + A[ψ + φ] + p+ 1) = 0

but we know that

(q[1 + A] + A[ψ + φ] + p+ 1) > 0

so

ψ − φ = 0

Thus

φ = ψ

which contradicts the assumption that φ 6= ψ

Thus, the proof of Theorem (5.4.1) when k is even is now finished.

2. If k is an odd integer.

Assume for the sake of contradiction that there exists distinct positive real numbers

φ and ψ such that

· · · , φ, ψ, φ, ψ, · · ·

is a prime period two solution of Eq.(5.1).

Since k is odd, xn−k = xn+1. Substituting in Eq.(5.1) we get

ψ = Aφ+
pφ+ ψ

q + ψ
(5.12)

and

φ = Aψ +
pψ + φ

q + φ
(5.13)
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From (5.12) we have

ψ(q + ψ) = Aφ(q + ψ) + pφ+ ψ

so

qψ + ψ2 = Aqφ+ Aφψ + pφ+ ψ (5.14)

From (5.13) we have

φ(q + φ) = Aψ(q + φ) + pψ + φ

Thus,

qφ+ φ2 = Aqψ + Aφψ + pψ + φ (5.15)

By subtracting (5.15) from (5.14) we have

q(ψ − φ) + (ψ2 − φ2) = Aq(φ− ψ) + p(φ− ψ) + (ψ − φ)

q(ψ − φ) + (ψ − φ)(ψ + φ) = −Aq(ψ − φ)− p(ψ − φ) + (ψ − φ)

Divide both sides by (ψ − φ), since φ 6= ψ

q + (φ+ ψ) = −Aq − p+ 1

Hence,

φ+ ψ = −Aq − q − p+ 1 (5.16)

While by adding (5.15) to (5.14) we have

q(ψ + φ) + ψ2 + φ2 = Aq(φ+ ψ) + 2Aφψ + p(φ+ ψ) + (φ+ ψ)

ψ2 + φ2 = (φ+ ψ)(Aq + p+ 1− q) + 2Aφψ

Add (2φψ) to both sides

ψ2 + 2φψ + φ2 = (φ+ ψ)(Aq + p+ 1− q) + (2A+ 2)φψ

(ψ + φ)2 = (φ+ ψ)(Aq + p+ 1− q) + 2(A+ 1)φψ

Now, substitute (φ+ ψ) from (5.16)

(−Aq − q − p+ 1)2 = (−Aq − q − p+ 1)(Aq + p+ 1− q) + 2(A+ 1)φψ (5.17)

First, we will find (−Aq − q − p+ 1)2

(−Aq − q − p+ 1)2 = (−Aq − q − p+ 1)(−Aq − q − p+ 1)
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= A2q2 +Aq2 +Aqp−Aq+Aq2 + q2 + qp− q+Aqp+ qp+ p2 +−p−Aq− q− p+ 1

and so

(−Aq− q−p+1)2 = A2q2 +2Aq2 +2Aqp−2Aq+ q2 +2qp−2q+p2−2p+1 (5.18)

Now, we will find (−Aq − q − p+ 1)(Aq + p+ 1− q)

(−Aq − q − p+ 1)(Aq + p+ 1− q) =

−A2q2 −Aqp−Aq +Aq2 −Aq2 − qp− q + q2 −Aqp− p2 − p+ pq +Aq + p+ 1− q

Thus

(−Aq − q − p+ 1)(Aq + p+ 1− q) = −A2q2 − 2Aqp− 2q + q2 − p2 + 1 (5.19)

Substitute (5.18) and (5.19) in (5.17).

A2q2+2Aq2+2Aqp−2Aq+q2+2qp−2q+p2−2p+1 = −A2q2−2Aqp−2q+q2−p2+1+2(A+1)φψ

A2q2+2Aq2+2Aqp−2Aq+q2+2qp−2q+p2−2p+1+A2q2+2Aqp+2q−q2+p2−1 = 2(A+1)φψ

2A2q2 + 2Aq2 + 4Aqp− 2Aq + 2p2 + 2qp− 2p = 2(A+ 1)φψ

2(A2q2 + Aq2 + 2Aqp− Aq + p2 + qp− p) = 2(A+ 1)φψ

A2q2 + Aq2 + 2Aqp− Aq + p2 + qp− p = (A+ 1)φψ

A2q2 + Aq2 + Aqp− Aq + Aqp+ p2 + pq − p = (A+ 1)φψ

Aq(Aq + q + p− 1) + p(Aq + p+ q − 1) = (A+ 1)φψ

(Aq + p)(Aq + q + p− 1) = (A+ 1)φψ

Consequently,

φψ =
(Aq + p)(Aq + q + p− 1)

A+ 1
(5.20)

From (5.16) and (5.20) we have

φψ(φ+ ψ) =
(Aq + p)(Aq + q + p− 1)

A+ 1
(−Aq − q − p+ 1)

φψ(φ+ ψ) =
(Aq + p)(Aq + q + p− 1)(−1)(Aq + q + p− 1)

A+ 1
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since (Aq+p), (A+ 1) and (Aq+ q+p− 1)2 are positive numbers, we conclude that

φψ(φ+ ψ) =
−(Aq + p)(Aq + q + p− 1)2

A+ 1
< 0

This contradicts our assumption that both φ and ψ are positive numbers, and so

the proof of Theorem (5.4.1) is now complete.

5.5 Invariant intervals

Theorem 5.5.1 Suppose that

p > q, 0 < A < 1, p3 + q2 < pq(1− A), p− q + qA < 1 and 2q < p− pA.

Assume that for some N ≥ 0

xN−k+1, · · · , xN−1, xN ∈
[
q
p
, p
q

]
then

xn ∈
[
q
p
, p
q

]
, for all n > N

Proof:

Since xn ≥ q
p

we have

xn+1 = Axn +
pxn + xn−k
q + xn−k

≥ A(
q

p
) +

p( q
p
) + xn−k

q + xn−k

so

xn+1 ≥ A(
q

p
) +

q + xn−k
q + xn−k

= A(
q

p
) + 1

substitute 1 = q
q

xn+1 ≥ A(
q

p
) +

q

q
= A(

q

p
) +

p( q
p
)

q

now since p > q we have

xn+1 ≥
q

p

(
A+

p

q

)
≥ q

p

(
p

q

)
≥ q

p
× 1

Thus

xn+1 ≥
q

p
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Now assume that

xn+1 = f(x, y) = Ax+
px+ y

q + y

In our interval f(x, y) is increasing in x for each fixed y, and decreasing in y for each fixed

x since
∂f

∂x
= A+

(q + y)× p− (px+ y)× 0

(q + y)2

∂f

∂x
= A+

(q + y)× p
(q + y)2

= A+
p

q + y
> 0

and
∂f

∂y
=

(q + y)× 1− (px+ y)× 1

(q + y)2

∂f

∂y
=
q + y − px− y

(q + y)2
=

q − px
(q + y)2

so f(x, y) is increasing in y for each fixed x if q
p
> x, and f(x, y) is decreasing in y for

each fixed x if q
p
< x.

Return to our equation: xn+1 = f(xn, xn−k)

In our interval f(xn, xn−k) is increasing in (xn) for each fixed (xn−k), and decreasing

in (xn−k) for each fixed (xn).

Since we assumed that for some N > 0, q
p
≤ xN ≤ p

q
, we have

f(xn, xn−k) ≤ f(
p

q
, xn−k) ≤ f(

p

q
,
q

p
)

and so

f(xn, xn−k) ≤ A

(
p

q

)
+
p(p

q
) + ( q

p
)

q + ( q
p
)

(5.21)

but we have so
p3 + q2

q
< (1− A)p

and since pq + q > q we conclude that

p3 + q2

pq + q
<
p3 + q2

q
< (1− A)p

and so
p3 + q2

pq + q
< (1− A)p
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In another way
1

p

(
p3 + q2

pq + q

)
< (1− A)

substitute
1

p
=

1
p2

1
p

to get
(p3 + q2)( 1

p2
)

(pq + q)(1
p
)
< 1− A

p3+q2

p2

pq+q
p

< 1− A

Multiply both sides by (p
q
)

p

q

(
p3+q2

p2

pq+q
p

)
<
p

q
(1− A)

so

p

q

(
p3+q2

p2

pq+q
p

)
+
p

q
A <

p

q

and
p
q
(p+ q2

p2
)

q + q
p

+
p

q
A <

p

q

so
(p
q
)p+ ( q

p
)(p
q
)( q
p
)

q + q
p

+
p

q
A <

p

q

Thus
p(p

q
) + ( q

p
)

q + q
p

+
p

q
A <

p

q
(5.22)

substitute (5.22) in (5.21) to get

xn+1 ≤
p(p

q
) + ( q

p
)

q + q
p

+
p

q
A <

p

q

and so

xn+1 ≤
p

q

The proof is now complete.

Theorem 5.5.2 Suppose that
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p < q, 0 < A < 1, q − p < Aq and Aq + p2 + 1
2
p < q.

Assume that for some N ≥ 0

xN−k+1, · · · , xN−1, xN ∈
[
q
p
, 2q
p

]
then

xn ∈
[
q
p
, 2q
p

]
, for all n > N

Proof:

Since xn ≥ q
p

we have

xn+1 = Axn +
pxn + xn−k
q + xn−k

≥ A(
q

p
) +

p( q
p
) + xn−k

q + xn−k

so

xn+1 ≥ A(
q

p
) +

q + xn−k
q + xn−k

= A(
q

p
) + 1

substitute 1 = q
q

xn+1 ≥ A(
q

p
) +

q

q
= A(

q

p
) +

q(p
p
)

q
= A(

q

p
) + (

q

p
)× (

p

q
)

so

xn+1 ≥
q

p

(
A+

p

q

)
=
q

p

(
Aq + p

q

)
(5.23)

but from assumption q − p < Aq so Aq + p > q and

Aq + p

q
> 1 (5.24)

substitute (5.24) in (5.23) to get

xn+1 ≥
q

p

(
Aq + p

q

)
≥ q

p
× 1

Thus,

xn+1 ≥
q

p

Assume that

xn+1 = f(x, y) = Ax+
px+ y

q + y

We have proved in the previous theorem that f(x, y) is increasing in x for each fixed y,

and decreasing in y for each fixed x in this interval.
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We have assumed that for some N > 0, q
p
≤ xN ≤ 2q

p
, so

xn+1 = f(xn, xn−k) ≤ f(
2q

p
,
q

p
)

xn+1 ≤ f(
2q

p
,
q

p
) = A(

2q

p
) +

p(2q
p

) + q
p

q + q
p

= A(
2q

p
) +

p(2q
p

) + ( q
p
)(2

2
)

q + q
p

xn+1 ≤ (
2q

p
)A+

2q
p

(p+ 1
2
)

q + q
p

≤ 2q

p
A+

2q
p

(p+ 1
2
)

q
p

xn+1 ≤
2q

p

(
A+

p+ 1
2

q
p

)

xn+1 ≤
2q

p

(
A+ (p+

1

2
)(
p

q
)

)
=

2q

p

(
A+

p2 + 1
2
p

q

)
so

xn+1 ≤
2q

p

(
Aq + p2 + 1

2
p

q

)
but from assumption Aq + p2 + 1

2
p < q, and so

xn+1 ≤
2q

p

(
Aq + p2 + 1

2
p

q

)
<

2q

p
(
q

q
) =

2q

p

Thus

xn+1 ≤
2q

p

The proof is complete.

78



5.6 Global stability

Theorem 5.6.1 Assume that

p > q, 0 < A < 1 , (p3 + q2) < pq(1− A), 2q < (p− pA) and p− q + qA < 1

Then the positive equilibrium point of Eq.(5.1) is globally asymptotically stable.

Proof: Set

f(x, y) = Ax+
px+ y

q + y

Under these assumptions, we have shown in Theorem (5.3.2) that the positive equilib-

rium point is locally asymptotically stable. We need to prove that x̄ is a global attractor

and we will use Theorem (2.5.1) for this.

We know that q
p
≤ f(x, y) ≤ p

q
, and in this interval f(x, y) is increasing in x for each fixed

y, and decreasing in y for each fixed x.

Suppose that (m,M) ∈
[
q
p
, p
q

]
×
[
q
p
, p
q

]
is a solution of the system

M = F (M,m) and m = F (m,M)

Then we get

M = AM +
pM +m

q +m

so

(1− A)M =
pM +m

q +m

From which we have

(M − AM)(q +m) = pM +m

so

Mq +mM − AMq − AmM = pM +m (5.25)

Also

m = Am+
pm+M

q +M

and

(1− A)m =
pm+M

q +M

Thus

(m− Am)(q +M) = pm+M
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and so

mq +mM − Amq − AmM = pm+M (5.26)

Subtract (5.26) from (5.25) to get

q(M −m)− Aq(M −m) = p(M −m) + (m−M)

q(M −m)− Aq(M −m) = p(M −m)− (M −m)

(M −m) (q − qA− p+ 1) = 0 (5.27)

but from assumption p− q + qA < 1, and so 1− p+ q − qA > 0. Thus, M −m = 0 and

m = M .

Theorem 5.6.2 Assume that

p < q, 0 < A < 1, 0 < p− q + qA < 1, Aq + p2 + 1
2
p < q and

p(p− q + 1 + qA) < 2q(1− A)

Then the positive equilibrium point of Eq.(5.1) is globally asymptotically stable.

Proof: Set

f(x, y) = Ax+
px+ y

q + y

Under these assumptions, we have shown in Theorem (5.3.3) that the positive equilib-

rium point is locally asymptotically stable. We need to prove that x̄ is a global attractor

and we will use Theorem (2.5.1) for this.

We know that q
p
≤ f(x, y) ≤ 2q

p
, and in this interval f(x, y) is increasing in x for each

fixed y, and decreasing in y for each fixed x.

Suppose that (m,M) ∈
[
q
p
, 2q
p

]
×
[
q
p
, 2q
p

]
is a solution of the system

M = F (M,m) and m = F (m,M)

Then we get

M = AM +
pM +m

q +m

and

m = Am+
pm+M

q +M

In the same procedure as in Theorem (5.6.1) we conclude that

(q − Aq − p+ 1)(M −m) = 0

but p− q + qA < 1, and 0 < 1− p+ q − qA. Thus, M = m.

The result is a consequence of Theorem (2.5.1).
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5.7 Numerical Discussion

In this section we give numerical examples which support the theoretical discussion

in the previous sections. These examples are of the form of equation (5.1) with different

values of p, q, A, k and the initial conditions. The examples were carried out on MATLAB.

Example 1:

Assume that Equation (5.1) holds, take k = 1, A = .01, p = .05, q = .02 and n = 0, 1, 2, ....

So the equation will be reduced to the following

xn+1 = .01xn +
.05xn + xn−1

.02 + xn−1

with the initial conditions x0 = x1 = 1

This example supports our result in Theorem (5.6.1), since the assumptions of this theo-

rem are existent in this example as we will clarify now

1. (p = .05) > (q = .02).

2. 0 < (A = .01) < 1.

3. ([p3 + q2] = 5.25× 10−4) < (pq[1− A] = 9.9× 10−4).

4. (2q = .04) < ([p− pA] = .0495).

5. ([p− q + qA] = .0302) < 1.

By theory, the positive equilibrium point x̄ = p−q+1+qA
1−A = .05−.02+1+.02×.01

1−.01
= 1.0406 is

globally asymptotically stable as it is obvious from Figure (5.1)

Example 2:

Assume that Equation (5.1) holds, take k = 1, A = .81, p = .1, q = .5 and n = 0, 1, 2, ....

So the equation will be reduced to the following

xn+1 = .81xn +
.1xn + xn−1

.5 + xn−1

with the initial conditions x0 = x1 = 1

This example supports our result in Theorem (5.6.2), since the assumptions of this theo-

rem are existent in this example as we will clarify now
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Figure 5.1: The behavior of the positive equilibrium point of xn+1 = .01xn + .05xn+xn−1

.02+xn−1
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Figure 5.2: The behavior of the positive equilibrium point of xn+1 = .81xn + .1xn+xn−1

.5+xn−1

1. (p = .1) < (q = .5).

2. 0 < (A = .81) < 1 .

3. 0 < ([p− q + qA] = 5× 10−3) < 1

4. ([Aq + p2 + .5p] = .465) < (q = .5)

5. ([p(p− q + 1 + qA)] = .1005) < ([2q(1− A)] = .19)

By theory, the positive equilibrium point x̄ = p−q+1+qA
1−A = .1−.5+1+.5×.81

1−.81
= 5.2895 is

globally asymptotically stable as it is obvious from Figure (5.2).

83



Appendix A

The MATLAB 6.5 Codes

A.1 The difference equation xn+1 = Axn +
βxn+γxn−k
Bxn+Cxn−k

%Qualitative behavior of the difference equation

%Xn+1 = AXn + ( Beta*Xn + Gamma*Xn-k ) / ( B*Xn + C*Xn-k )

%We’am Masarweh

%1095374

%format long

Beta=input(’insert the value of Beta=’);

Gamma=input(’insert the value of Gamma=’);

’P=Beta/Gamma’

P=Beta/Gamma

B=input(’insert the value of B=’);

C=input(’insert the value of C=’);

’Q=B/C’

Q=B/C

A=input(’insert the value of A=’);
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K=input(’insert the value of K=’);

for h=1:K+1

x(h)=input(’insert the value of initial value =’);

y(h)=(C/Gamma).*x(h);

end

for i = K+1 :100,

y(i+1)=A.*y(i)+((P.*y(i)+y(i-K))/(Q.*y(i)+y(i-K)));

end

plot (y)

A.2 The difference equation xn+1 = Axn +
pxn+xn−k
q+xn−k

%Qualitative behavior of the difference equation

%Xn+1 = AXn + ( p*Xn + Xn-k ) / ( q + Xn-k )

%We’am Masarweh

%1095374

%format long

p=input(’insert the value of p=’);

q=input(’insert the value of q=’);

A=input(’insert the value of A=’);

K=input(’insert the value of K=’);

for h=1:K+1

x(h)=input(’insert the value of initial value =’);

end

for i = K+1 :100,

x(i+1)=A.*x(i)+((p.*x(i)+x(i-K))/(q+x(i-K)));

end

plot (x)
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